
Cite as: Vasudevan, S.: Coupling 3D Simulations with 1D Simulations (The Water Hammer Effect). In

Proceedings of CFD with OpenSource Software, 2016, Edited by Nilsson. H.,

http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2016

CFD with OpenSource software

A course at Chalmers University of Technology
Taught by Håkan Nilsson

Coupling 3D Simulations
with 1D Simulations

(The Water Hammer Effect)

Developed for OpenFOAM-4.x
Required: MATLAB and Simulink (R2015b), gcc-4.8.5

Author:
Sudharsan Vasudevan
sudvas@student.chalmers.se

Peer reviewed by:
Ebrahim Ghahramani

Håkan Nilsson
Olivier Petit

Licensed under CC-BY-NC-SA, https://creativecommons.org/licenses/

Disclaimer: This is a student project work, done as part of a course where OpenFOAM and some
other OpenSource software are introduced to the students. Any reader should be aware that it

might not be free of errors. Still, it might be useful for someone who would like learn some details
similar to the ones presented in the report and in the accompanying files. The material has gone

through a review process. The role of the reviewer is to go through the tutorial and make sure that
it works, that it is possible to follow, and to some extent correct the writing. The reviewer has no

responsibility for the contents.

January 22, 2017

Learning Outcomes

The main requirements of a tutorial is that it should teach the four points: How to use it, The
theory of it, How it is implemented, and How to modify it. Therefore the list of learning outcomes
is organized with those headers.

The reader will learn:

How to use it

• How to perform a 3D CFD analysis of water hammer in pipe flow using sonicLiquidFoam
solver.

• How to use a coupled 1D 3D solver to analyse water hammer in pipe flow.

Theory of it

• The theory of water hammer.

• How the sonicLiquidFoam 3D CFD solver works.

How it is implemented

• How to implement time varying boundary conditions available in OpenFOAM.

• How to develop a boundary condition that interact with MATLAB/ Simulink, from scratch.

How to modify it

• How to couple a 3D CFD simulation in OpenFOAM with a 1D simulation in Simulink through
the boundary conditions that interact with MATLAB/ Simulink.

1

Contents

1 Water Hammer 3
1.1 Introduction . 3
1.2 Theoretical Background . 3
1.3 The sonicLiquidFoam solver . 4
1.4 Test Case - 3D Simulation with OpenFOAM . 6

2 Coupling 1D and 3D Simulations 9
2.1 Coupling OpenFOAM with MATLAB/ Simulink . 9

2.1.1 OpenFOAM - MATLAB link . 9
2.1.2 Boundary conditions linking OpenFOAM with MATLAB 11
2.1.3 Solver modification . 17

2.2 Test Cases - Coupled Simulation . 18
2.2.1 Test case - 1 . 18
2.2.2 Test Case - 2 . 23

3 Conclusion 27

2

Chapter 1

Water Hammer

1.1 Introduction

The pressure pulsations caused by rapid regulation of flow in a hydraulic system is known as water
hammer. Water hammer is a transient phenomenon and results in problems like noise, vibration,
pipe collapse etc. Both, 1-dimensional and 3-dimensional simulations are used to analyse water
hammer. 1D simulations are computationally efficient. However, they have the shortcoming of not
being able to resolve the flow structures in space, in detail. However a 3D CFD simulation is the apt
solution for this. On the other hand, it would make the 3D simulations prohibitively computationally
expensive to implement all the complex aspects of the hydraulic system. One obvious fix is to take
advantage of both these simulation methodologies and develop a coupled 1-D 3-D simulation. The
method for coupling a 3-D CFD simulation with a 1-D MOC (Method of Characteristics) simulation
to analyse water hammer in pipe flow was established by Wang, Nilsson, Yang and Petit (2016)
[1]. Quite similarly, this work is a tutorial on coupling 1D simulations in Simulink with 3D CFD
simulations in OpenFOAM to analyse the effects of water hammer in pipe flow. The method of
connecting MATLAB with OpenFOAM described by Palm (2012) [2] is used in this project.

1.2 Theoretical Background

The differential pressure induced in a fluid due to a sudden change in momentum causes water
hammer. This transient phenomenon can be formulated using Newton’s second law.

dp

dt
= ρa

dv

dt
(1.1)

Eq. 1.1 is known as the Joukowsky equation. Here, p is the pressure, ρ is density of the fluid, v
is the fluid velocity and a is the speed of sound in the fluid. The speed of sound in the fluid can
further be expressed as,

a =

√
K

ρ
(1.2)

Here, K is the bulk modulus, a parameter associated with the compressibility of a fluid. The bulk
modulus can in-turn be expressed as,

K = ρ
dp

dρ
(1.3)

Once the bulk modulus is obtained, the speed of sound propagation in the fluid can be estimated.
This in turn can be used in the Joukowsky equation to resolve the pressure pulsations. Water
hammer and resulting pressure pulsations in a pipe flow will be analysed using a simple 3D CFD
simulation in the subsequent sections.

3

1.3 The sonicLiquidFoam solver

The sonicLiquidFoam is a 3D CFD solver in OpenFOAM and is used in this tutorial to analyse
water hammer. sonicLiquidFoam is a transient solver for the laminar flow of a compressible liquid.
The solver is based on the PIMPLE algorithm. An excerpt from sonicLiquidFoam.C is given below,
followed by a brief explanation of the solution algorithm. sonicLiquidFoam.C is located at
$FOAM_SOLVERS/compressible/sonicFoam/sonicLiquidFoam in OpenFOAM.

1 #include "fvCFD.H"

2 #include "pimpleControl.H"

3 // * //

4 int main(int argc, char *argv[])

5 {

6 #include "postProcess.H"

7 #include "setRootCase.H"

8 #include "createTime.H"

9 #include "createMesh.H"

10 #include "createControl.H"

11 #include "createFields.H"

12 #include "initContinuityErrs.H"

13 // * //

14 Info<< "\nStarting time loop\n" << endl;

15 while (runTime.loop())

16 {

17 Info<< "Time = " << runTime.timeName() << nl << endl;

18 #include "compressibleCourantNo.H"

19 solve(fvm::ddt(rho) + fvc::div(phi));

20 // --- Pressure-velocity PIMPLE corrector loop

21 while (pimple.loop())

22 {

23 fvVectorMatrix UEqn

24 (

25 fvm::ddt(rho, U)

26 + fvm::div(phi, U)

27 - fvm::laplacian(mu, U)

28);

29 solve(UEqn == -fvc::grad(p));

30 // --- Pressure corrector loop

31 while (pimple.correct())

32 {

33 volScalarField rAU("rAU", 1.0/UEqn.A());

34 surfaceScalarField rhorAUf

35 (

36 "rhorAUf",

37 fvc::interpolate(rho*rAU)

38);

39 U = rAU*UEqn.H();

40 surfaceScalarField phid

41 (

42 "phid",

43 psi

44 *(

45 fvc::flux(U)

46 + rhorAUf*fvc::ddtCorr(rho, U, phi)/fvc::interpolate(rho)

4

47)

48);

49 phi = (rhoO/psi)*phid;

50 fvScalarMatrix pEqn

51 (

52 fvm::ddt(psi, p)

53 + fvc::div(phi)

54 + fvm::div(phid, p)

55 - fvm::laplacian(rhorAUf, p)

56);

57 pEqn.solve();

58 phi += pEqn.flux();

59 solve(fvm::ddt(rho) + fvc::div(phi));

60 #include "compressibleContinuityErrs.H"

61 U -= rAU*fvc::grad(p);

62 U.correctBoundaryConditions();

63 }

64 }

65 rho = rhoO + psi*p;

66 runTime.write();

67 Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"

68 << " ClockTime = " << runTime.elapsedClockTime() << " s"

69 << nl << endl;

70 }

71 Info<< "End\n" << endl;

72 return 0;

73 }

Solution algorithm:

1. Begin computation for a time step (Line 15)

2. Solve for the continuity equation (Line 19)

∂ρ

∂t
+
∂ρui
∂xi

= 0 (1.4)

3. Begin PIMPLE loop (Line 21)

4. Solve for the momentum equation (Line 29)

∂ρui
∂t

+
∂

∂xj
(ρuiuj)−

∂

∂xj

(
µ
∂ui
∂xj

)
= − ∂p

∂xi
(1.5)

5. Begin the pressure corrector loop (Line 31)

6. Correct the pressure for the number of times specified in the ’nCorrectors’ criteria of the
system\fvSolution file in the case directory.

7. Repeat steps 4 - 6 the number of times specified as ’nOuterCorrectors’ in the system/fvSolution
file or until the conditions specified in the ’residualControl’ (also in the system/fvSolution

file) are achieved, which ever is earlier.

8. Linearize the variation in density (Line 65) according to

ρ = ρ0 + ψ(p− p0) (1.6)

where, ψ = ∂ρ
∂p , reference pressure, p0 and reference density, ρ0 are constants and are specified

in the constant\thermodynamicProperties file in the case directory.

5

9. Proceed to the next time step

The quantity ψ is defined as ψ = ∂ρ/∂p and can be related to the bulk modulus as

K =
ρ

ψ
(1.7)

1.4 Test Case - 3D Simulation with OpenFOAM

In this section a 3D CFD simulation of a simple pipe flow will be performed to analyse water hammer.

Files required: All the files required for the entire tutorial are in the SudharsanV directory. Down-
load the SudharsanV.tgz file to the $HOME directory and unpack it using the following command.

cd $HOME

tar xzf SudharsanV.tgz

rm SudharsanV.tgz

The structure of the directory is given below.

SudharsanV

|-- Cases

|.. |-- 1_OF_OFBC

|.. |-- 1_OF_SimulinkBC

|.. |-- Coupled_1D3D

|-- MatlabBC

|-- mySonicLiquidFoam

The Cases directory contains three test cases, where the first test case (1_OF_OFBC) is for the 3D
CFD simulation. The MatlabBC directory, the mySonicLiquidFoam directory along with two other
test cases will be required in the next chapter.

Copy the test case for the 3D CFD simulation into the run directory after sourcing OpenFOAM.

OF4x

cp -r $HOME/SudharsanV/Cases/1_OF_OFBC $FOAM_RUN

run

cd 1_OF_OFBC

Figure 1.1: Computational Domain (not to scale)

6

The computational domain consists of a pipe with a square cross-section, see Fig.1.1, where also the
vertex numbers and patch names are shown. The flow is along the positive y direction. The pipe is
1000m long and has a cross-sectional area of 1m2. The domain was meshed with simple hexahedral
cells using the blockMesh utility in OpenFOAM. The mesh was generated with 200 cells along the
y-axis and 10 cells each along the other two axes.
The boundary conditions for this test case are as follows:
The inlet to the pipe is assumed to be connected to a large reservoir. Therefore the static pressure
is specified at the inlet. This value of the static pressure is the hydrostatic pressure corresponding
to the location of the pipe with respect to the reservoir’s free surface. The velocity at the inlet is
specified as zeroGradient, a homogeneous Neumann boundary condition. At the outlet, pressure is
specified as zeroGradient (homogeneous Neumann). The outlet boundary condition for velocity is
specified as uniformFixedValue. This enables specification of a linear variation of velocity with time.
The implementation of this boundary condition in the 0/U file is given below.

outlet

{

type uniformFixedValue;

uniformValue tableFile;

uniformValueCoeffs

{

fileName "$FOAM_CASE/time-series";

}

}

Where, the linear variation of velocity is specified in the time-series file, placed in the case direc-
tory. The time-series file reads,

(

(0 (0 0 0))

(5 (0 1 0))

(10 (0 1 0))

(14 (0 1 0))

)

At the walls, boundary condition for both velocity and pressure are specified as symmetryPlane,
implying a symmetric boundary condition.
Since symmetric boundary condition is used for the walls, the simulation would capture only changes
along the y-axis. In other words, though the simulation is called a 3D simulation, it captures flow
properties only in 1 dimension. Therefore to be more computationally efficient, use only 1 cell in
x and z directions (change in the constant/polyMesh/blockMeshDict file) and use the ’empty’
boundary condition for the walls (change in the 0/U and 0/p files).
Create the mesh and run the case.

blockMesh

checkMesh

sonicLiquidFoam >& log&

The following results can be obtained on successful completion of the simulation.

7

Figure 1.2: Time history of pressure at duct exit

Figure 1.2 is the pressure pulsations at the pipe exit due to water hammer.

Figure 1.3: Time history of velocity at 0.5L

Figure 1.3 is the fluctuation of velocity at the middle of the pipe (500m downstream of the reservoir).

8

Chapter 2

Coupling 1D and 3D Simulations

In this chapter, the existing link between OpenFOAM and MATLAB developed by Palm (2012) [2]
will be modified to suit current requirement and a link between OpenFOAM and Simulink will be
developed. This link will be used in two test cases. The first test case will check if data is exchanged
at each time step between OpenFOAM and MATLAB/ Simulink. The second test case will be a
coupled 1D 3D simulation of a pipe flow.

2.1 Coupling OpenFOAM with MATLAB/ Simulink

In this section, a two-way coupling between OpenFOAM and MATLAB/ Simulink will be estab-
lished through two new boundary conditions. One for velocity and one for pressure. These boundary
conditions will exchange values of velocity and pressure with MATLAB/ Simulink and set the ap-
propriate values at the patch at every time step.

Important Note: The versions of MATLAB and gcc compiler must be compatible. A simple C++
code for testing the C++ MATLAB linking is provided in the Appendix to this report. The reader
is advised to check the compatibility using this simple code after sourcing OpenFOAM as the gcc
version used in OpenFOAM may be different from that of the system’s default version. To check the
gcc version that is being used, type which gcc in the terminal window. Not all gcc compilers are
compatible with a given version of MATLAB. Also, the library files and directories to be included
in the Make/options file depend on the version of gcc compiler used. So one has to read through
the errors during compilation and modify the instructions for the compiler i.e., Make/options file
accordingly on a trial and error basis. In this study MATLAB R2015b and gcc-4.8.5 are used and
instructions for the compiler are in accordance with these versions. One can always refer to the
MathWorks website [3] for details regarding MATLAB versions and the corresponding compatible
versions of gcc. The simulations for this study were performed with OpenFOAM and MATLAB
installed at Chalmers University of Technology.

2.1.1 OpenFOAM - MATLAB link

The code developed by Palm (2012) [2] had to be modified to suit the current study. The relevant
files are provided in the SudharsanV/MatlabBC/externalPipe and will be discussed in detail. The
files provided here are after incorporating the changes. DO NOT make changes to any of these files.
Copy the directory using the following commands

OF4x

cp -r $HOME/SudharsanV/MatlabBC/externalPipe $WM_PROJECT_USER_DIR/src

cd $WM_PROJECT_USER_DIR/src/externalPipe

9

The link between OpenFOAM and MATLAB was established using a class named myFirstMat-
labPipe. It is to be noted that the word ’pipe’ used here (and in externalPipe) is no way connected
to a hydraulic pipe. The word ’pipe’ here refers to the connection between MATLAB and C++.
The important member function in this class is the matlabCallScript() function. This function
obtains scalar value from MATLAB and returns a scalar value to MATLAB. However, to suit the re-
quirements of the current study, this member function was modified to accept three input arguments
and output an array with two elements. The reason for this will be clearly explain when the new
boundary conditions are developed. The member function was renamed as matlabCallScript1()

after the modifications to avoid any ambiguity with the the previous work. Note that the func-
tion declaration in myFirstMatlabPipe.H and function definition in myFirstMatlabPipe.C were
modified.
The definition of matlabCallScript1() member function can be found in the myFirstMatlabPipe/
myFirstMatlabPipe.C file in the externalPipe directory. The function definition is given below.

1 double* myFirstMatlabPipe::matlabCallScript1

2 (const char* matlabFilename,double inputArg1,

3 double inputArg2, double inputArg3) const

4 {

5 // Increase iterator value //

6 engEvalString(eMatlabPtr,"ii=ii+1;");

7

8 // Create scalar mxArray object compatible with MATLAB and C++ //

9

10 mxArray *inMxArray1 = mxCreateDoubleMatrix(1,1,mxREAL);

11 double *inPtr1 = mxGetPr(inMxArray1);

12 // Send value of inMxArray to MATLAB //

13 inPtr1[0] = inputArg1;

14 engPutVariable(eMatlabPtr,"inputFromCpp1",inMxArray1);

15

16 mxArray *inMxArray2 = mxCreateDoubleMatrix(1,1,mxREAL);

17 double *inPtr2 = mxGetPr(inMxArray2);

18 // Send value of inMxArray to MATLAB //

19 inPtr2[0] = inputArg2;

20 engPutVariable(eMatlabPtr,"inputFromCpp2",inMxArray2);

21

22

23 mxArray *inMxArray3 = mxCreateDoubleMatrix(1,1,mxREAL);

24 double *inPtr3 = mxGetPr(inMxArray3);

25 // Send value of inMxArray to MATLAB //

26 inPtr3[0] = inputArg3;

27 engPutVariable(eMatlabPtr,"inputFromCpp3",inMxArray3);

28

29 // Execute MATLAB script //

30 engEvalString(eMatlabPtr,matlabFilename);

31

32 // Extract value to C++ and return //

33 mxArray *outMxArray1 = engGetVariable(eMatlabPtr,"outputToCpp1");

34 double *outPtr1 = mxGetPr(outMxArray1);

35

36 engEvalString(eMatlabPtr,"t_old1=inputFromCpp1");

37 return outPtr1;

38 };

39

In the above code, ii is a counter that increases by one, every time MATLAB is called from Open-

10

FOAM. Lines 10-14, 16-20 and 23-27 send values to MATLAB from OpenFOAM. Lines 33-34 receive
values from MATLAB. The variable t old1 in line 36 is used to store the time value of the previous
time step, as it would be required for the 1-D 3-D coupled simulation. This will be explained in appro-
priate section later. Also, it is to be noted that the engEvalString() is a really important function.
The argument provided to it is treated as a MATLAB command. Therefore engEvalString() is
used to compile and execute MATLAB commands from C++. It is interesting to note that, the
name of a MATLAB script file (*.m file) by it self is a command and hence can be executed from
OpenFOAM using the engEvalString function. Refer to work done by Palm (2012) [2] for a detailed
description of the OpenFOAM- MATLAB link.

The Make directory is placed in the externalPipe directory. The Make/options file was also modi-
fied to include libraries and directories corresponding to MATLAB R2015b. The Make/options file
has the following content:

EXE_INC = \

-Wl,-rpath,/chalmers/sw/sup64/matlab-2015b/bin/glnxa64 \

-I/chalmers/sw/sup64/matlab-2015b/extern/include

LIB_LIBS = \

-L/chalmers/sw/sup64/matlab-2015b/bin/glnxa64 \

-leng \

-lmx

If a different version of MATLAB is used, add the corresponding directories and libraries to the
Make/options file. Compile the myFirstMatlabPipe class from the externalPipe directory.

wmake libso

The complete code of all the files in the myFirstMatlabpipe directory is provided in the Appendix
to this report.

2.1.2 Boundary conditions linking OpenFOAM with MATLAB

The ultimate aim of this work is to couple a 3D CFD simulation in OpenFOAM with 1D simulation
in Simulink. To achieve this the velocity and pressure values need to be exchanged at the coupling
interface (boundaries) at each time step.

Boundary conditions for velocity and pressure will be developed with the following logic:

• The velocity boundary condition gets access to the velocity and pressure fields at that time
step.

• A scalar value is obtained for each of these fields by averaging (pressure and y-component of
velocity), which is in turn given as input to MATLAB along with current time. The current
time value along with the time value at the previous time step (stored in the t old1 variable
of myFirstMatlabPipe::matlabCallScript1() member function) is used by Simulink for the
1-D part of the simulation.

• Values of velocity and pressure are obtained from MATLAB (after MATLAB/Simulink cal-
culations). Note that this point and the one above provide the reason for modifying the
matlabCallScript() member function of the myFirstMatlabPipe class to include more in-
put arguments and return an array of type double as output.

• The boundary condition for velocity sets the velocity at the patch using the value obtained
from MATLAB.

11

• The pressure boundary condition obtains the value for pressure from the velocity boundary
condition and sets pressure in the boundary.

A method for developing these boundary conditions will be discussed. However, the final directories
for both these boundary conditions(timeVaryingFromMatlab and timeVaryingFromMatlabScalar)
are provided in the SudharsanV/MatlabBC directory.

Boundary condition for the vector field

In this section, a boundary condition for a vector field that interacts with MATLAB will be devel-
oped. The template for creating a boundary condition for the vector field (velocity in this case) is
obtained by using the following commands.

cd $WM_PROJECT_USER_DIR/src

foamNewBC -f -v timeVaryingFromMatlab

The -f flag specifies that the boundary condition is of type fixed value. The -v flag specifies that
it is for a vector field. This command creates a directory called timeVaryingFromMatlab with the
following structure:

timeVaryingFromMatlab

|-- Make

| |-- files

| |-- options

|-- timeVaryingFromMatlabFvPatchVectorField.C

|-- timeVaryingFromMatlabFvPatchVectorField.H

Open the directory.

cd timeVaryingFromMatlab

Open the timeVaryingFromMatlabFvPatchVectorField.H file. Include the class definition of OpenFOAM-
MATLAB pipe as a header file.

...

#include "fixedValueFvPatchFields.H"

#include "Function1.H"

#include "myFirstMatlabPipe.H" //add this line

...

Remove the existing private data members and member functions and add the private data given
below.

// Private data

myFirstMatlabPipe mlObj;

string matlabFile_;

vector vel_;

label curTimeIndex_;

scalar t() const;

scalar prs_;

...

Remove the declaration of the mapping functions autoMap() and rmap(). Include the two access
functions as public member functions as given below :

12

...

public:

vector& vel()

{

return vel_;

}

scalar prs() const //Access function for the scalar BC

{

return prs_;

}

...

Save and exit this file.

Both private and public member functions (including constructors) are defined in the
timeVaryingFromMatlabFvPatchVectorField.C file.
Open the timeVaryingFromMatlabFvPatchVectorField.C file. To define the constructor functions,
add the following code to the corresponding constructors just after the ’:’ and before the ’{’ (after
deleting the existing code in those lines)
Constructor-1:

fixedValueFvPatchVectorField(p, iF),

matlabFile_("MyScript;"),

vel_(0,0,0),

curTimeIndex_(-1),

prs_(0.0)

Constructor-2:

fixedValueFvPatchVectorField(p, iF),

matlabFile_("MyScript;"),//matlabFile_(dict.lookup("matlabFile")),

vel_(0,0,0),

curTimeIndex_(-1),

prs_(0.0)

Constructor-2 is used to initialize the data members of the class when the boundary condition is set
through the 0/U file in the case directory.

Constructor-3:

fixedValueFvPatchVectorField(ptf, p, iF, mapper),

vel_(ptf.vel_),

curTimeIndex_(-1),

prs_(ptf.prs_)

Constructor-4:

fixedValueFvPatchVectorField(ptf),

vel_(ptf.vel_),

curTimeIndex_(-1),

prs_(ptf.prs_)

Constructor-5:

13

fixedValueFvPatchVectorField(ptf, iF),

vel_(ptf.vel_),

curTimeIndex_(-1),

prs_(ptf.prs_)

Remove the definition of the mapping functions autoMap() and rmap(). The important public
member function in the class definition of this boundary condition is the updateCoeffs() function
that actually computes the boundary condition from a matlab script. Remove the existing definition
of the updateCoeffs() function and add the following definition.

1 if (updated())

2 {

3 return;

4 }

5 if (curTimeIndex_ != this->db().time().timeIndex())

6 {

7 if (t()>0.0)

8 {

9 const fvPatchField<vector>& UPatch1 =

10 patch().lookupPatchField<volVectorField, vector>("U");

11 scalar meanVelocity=gSum(UPatch1.patchInternalField()*

12 mag(patch().Sf())).y() / gSum(mag(patch().Sf()));

13 double UPatch = meanVelocity;

14 Info<<"U_out to Matlab:"<<UPatch<<endl;

15 const fvPatchField<scalar>& pPatch2 =

16 patch().lookupPatchField<volScalarField, scalar>("p");

17 scalar pPatchInternalAverage = gAverage

18 (pPatch2.patchInternalField());

19 double pPatch=pPatchInternalAverage;

20 Info<<"P_out to Matlab:"<<pPatch<<endl;

21 const char *script=matlabFile_.c_str();

22 double* output =

23 mlObj.matlabCallScript1(script,t(),UPatch,pPatch);

24 vel_.y()=output[0];

25 Info<<"U_in from Matlab"<<output[0]<<endl;

26 prs_=output[1];

27 Info<<"P_in from Matlab"<<output[1]<<endl;

28 fixedValueFvPatchField::operator==(vel_);

29 }

30 else

31 {

32 const char *script=matlabFile_.c_str();

33 double* output = mlObj.matlabCallScript1(script,t(),0,0);

34 vel_.y()=output[0];

35 prs_=output[1];

36 fixedValueFvPatchField::operator==(vel_);

37 }

38 curTimeIndex_ = this->db().time().timeIndex();

39 }

40 fixedValueFvPatchField::updateCoeffs();

Note that the updateCoeffs() function is called for both initialization of the fields in the patch
(at t = 0) and to calculate the boundary condition at each time step. Clearly the if (t()>0.0)

statement in Line 7 is employed for the latter. In case of initialization, two dummy values (0 in our

14

case) are passed to the matlabCallScript1() function (Line 33).
In Lines 9 to 19, the pressure and the velocity fields in the first internal cell closest to the patch
at the current time is accessed and an average value of pressure and the y-component of velocity is
calculated. The matlabCallScript1() function belonging to the myFirstMatlabPipe class is then
called with these averaged values along with current time value and name of the MATLAB script
file. Thus the data from OpenFOAM is sent to MATLAB. The values received from MATLAB are
stored in the array called output. This two-way communication with MATLAB is implemented in
Lines 22-23. The values of pressure and velocity obtained from MATLAB are stored in the data
members vel and prs . The scalar prs can be accessed by the boundary condition for the scalar
field (pressure) through the prs() access function.
Replace the definition of the write() function with,

fvPatchVectorField::write(os);

os.writeKeyword("Velocity") << vel_ << token::END_STATEMENT << nl;

writeEntry("value", os);

Save and exit this file.
Once the class is defined, the options file in the Make directory is to be modified to account for
the inclusion of directories and libraries related to the MATLAB link. Replace the contents of the
Make/options file with,

EXE_INC = \

-I$(LIB_SRC)/finiteVolume/lnInclude \

-I$(LIB_SRC)/meshTools/lnInclude \

-Wl,-rpath,/chalmers/sw/sup64/matlab-2015b/bin/glnxa64 \

-I/chalmers/sw/sup64/matlab-2015b/extern/include \

-I$(WM_PROJECT_USER_DIR)/src/externalPipe/myFirstMatlabPipe

LIB_LIBS = \

-lfiniteVolume \

-lmeshTools \

-L/chalmers/sw/unsup64/OpenFOAM/ThirdParty-4.x/platforms/linux64/gcc-4.8.5/lib64 \

-lstdc++ \

-L/chalmers/sw/sup64/matlab-2015b/bin/glnxa64 \

-leng \

-lmx \

-L$(FOAM_USER_LIBBIN) \

-lexternalMatlabPipes

Compile the boundary condition.

wmake libso

Boundary condition for the scalar field

In this section the boundary condition for the scalar (pressure in this case) is discussed. The bound-
ary condition obtains the pressure value from the timeVaryingFromMatlab boundary condition and
sets it in the patch. The procedure for developing the boundary condition from scratch (by defin-
ing the data members, constructor and other member functions) is similar to the one explained
for timeVaryingFromMatlab. For brevity of the report, a detailed procedure is not provided. The
directory for this boundary condition with the complete set of files is provided in the SudharsanV

directory. Note that the template for a fixed value, scalar field boundary condition can be obtained
using the following command (Do not execute the command for this tutorial).

15

foamNewBC -f -s timeVaryingFromMatlabScalar

The command creates a directory with the structure given below.

timeVaryingFromMatlabScalar/

|-- Make

| |-- files

| |-- options

|-- timeVaryingFromMatlabScalarFvPatchScalarField.C

|-- timeVaryingFromMatlabScalarFvPatchScalarField.H

Copy the directory with all the necessary files for this boundary condition to the $WM_PROJECT_

USER_DIR/src directory.

cd $WM_PROJECT_USER_DIR/src

cp -r $HOME/SudharsanV/MatlabBC/timeVaryingFromMatlabScalar .

cd timeVaryingFromMatlabScalar

The important member function in this boundary condition is the updateCoeffs() function and it
will be explained in detail. It is defined in timeVaryingFromMatlabScalarFvPatchScalarField.C

file.

1 void Foam::timeVaryingFromMatlabScalarFvPatchScalarField::updateCoeffs()

2 {

3 if (updated())

4 {

5 return;

6 }

7 if (curTimeIndex_ != this->db().time().timeIndex())

8 {

9 const fvPatchField<vector>& UPatch1 =

10 this->patch().template lookupPatchField<volVectorField, vector>("U");

11 const timeVaryingFromMatlabFvPatchVectorField& UPatch2 =

12 refCast<const timeVaryingFromMatlabFvPatchVectorField>(UPatch1);

13 scalar pr;

14 pr = UPatch2.prs();

15 pr_=pr;

16 fixedValueFvPatchField::operator==(pr_);

17 curTimeIndex_ = this->db().time().timeIndex();

18 }

19 fixedValueFvPatchField::updateCoeffs();

20 }

The refCast<>() function defined in $FOAM_SRC/OpenFOAM/db/typeInfo/typeInfo.H is used here
(line 11-12). This function defines a dynamic casting by passing the reference to an object of a
particular class as an argument. To make it more clear, the pressure value for setting the pressure
field in the boundary is required. This pressure value is to be obtained from the velocity boundary
condition (timeVaryingFromMatlab) through its access function prs(). However, to access prs(),
an object of the class timeVaryingFromMatlabFvPatchVectorField is required. For this, a refer-
ence to its base class (fvPatchField) is created. This is then converted to a reference to the derived
class through the refCast() function. This type of casting is called ”downcasting” (convert from
’reference-to-base’ to ’reference-to-derived’). The pressure value obtained (line 14) is used to set the
scalar field in the boundary using the ’==’ operator (line 16).

16

Also, note that, the libraries and directories corresponding to the timeVaryingFromMatlab boundary
condition are included in the Make/options file. The Make/options file as given below.

EXE_INC = \

...

-I$(WM_PROJECT_USER_DIR)/src/externalPipe/myFirstMatlabPipe \

-I$(WM_PROJECT_USER_DIR)/src/timeVaryingFromMatlab

LIB_LIBS = \

...

-L$(FOAM_USER_LIBBIN) \

-lexternalMatlabPipes \

-ltimeVaryingFromMatlab

Compile the boundary condition.

wmake libso

The complete codes for each of the files in the timeVaryingFromMatlabScalar directory is provided
in the Appendix to this report.

2.1.3 Solver modification

A very small adjustment is to be made to the solver. The solver is constructed in such a way that the
momentum equations are solved initially followed by the equation for pressure. The createFields.H
file, which initializes these fields, initializes pressure ahead of velocity. Since the MATLAB code
initializing these fields is called from the velocity boundary condition, it would result in an error. So
the order in which the fields were initialized is to be changed in createFields.H file. Copy the solver
to the $WM_PROJECT_USER_DIR/applications directory, rename it and modify the Make/files file
as given below.

cp -r $FOAM_SOLVERS/compressible/sonicFoam/sonicLiquidFoam \

$WM_PROJECT_USER_DIR/applications

cd $WM_PROJECT_USER_DIR/applications

mv sonicLiquidFoam mySonicLiquidFoam

cd mySonicLiquidFoam

mv sonicLiquidFoam.C mySonicLiquidFoam.C

sed -i s/sonicLiquidFoam/mySonicLiquidFoam/g Make/files

sed -i s/FOAM_APPBIN/FOAM_USER_APPBIN/g Make/files

Swap the initialization of pressure and velocity fields in createFields.H file. The createFields.H

file should have the fields created in the order given below.

#include "readThermodynamicProperties.H"

#include "readTransportProperties.H"

Info<< "Reading field U\n" << endl;

volVectorField U

(

IOobject

(

"U",

runTime.timeName(),

mesh,

IOobject::MUST_READ,

17

IOobject::AUTO_WRITE

),

mesh

);

Info<< "Reading field p\n" << endl;

volScalarField p

(

IOobject

(

"p",

runTime.timeName(),

mesh,

IOobject::MUST_READ,

IOobject::AUTO_WRITE

),

mesh

);

...

Compile the solver.

wmake

2.2 Test Cases - Coupled Simulation

In this section, two cases will be tested. The first case is quite similar to the 3D CFD case tested
earlier. The difference is, here the outlet boundary conditions will be set using MATLAB/ Simulink.
This is a test case to ensure that velocity and pressure values are exchanged between OpenFOAM
and MATLAB/ Simulink. The second test case is that of a coupled 1-D 3-D simulation.

2.2.1 Test case - 1

The domain is a square duct of length 1000m and cross-sectional area 1m2. Upstream of the duct is
a reservoir that provides a constant hydrostatic pressure. The variation in outlet velocity with time
is set using a simple Simulink signal block as shown in Fig.2.1. Note that, the velocity increases
from 0 to 1 m/s in 5s and then remains constant. The pressure at the outlet was set with MATLAB.
The MATLAB script is programmed to return the same value that was obtained from OpenFOAM.
In a way this would be an explicit implementation of a homogeneous-Neumann boundary condition,
since the value from OpenFOAM is of the first internal cell from the patch.

18

Figure 2.1: Simulink signal for variation of outlet velocity with time

Copy the case directory to the $FOAM_RUN directory.

OF4x

cp -r $HOME/SudharsanV/Cases/1_OF_SimulinkBC $FOAM_RUN

run

cd 1_OF_SimulinkBC

The following changes were made to files in the case directory to incorporate the new boundary
conditions.
In the 0/U file, the boundary condition at the outlet was set as given below

outlet

{

type timeVaryingFromMatlab;

}

Similarly, In the 0/p file, the boundary condition at the outlet was set to,

outlet

{

type timeVaryingFromMatlabScalar;

}

In the system/controlDict file, the following code was added at the end. This is to include the
shared object file of the new boundary conditions from $FOAM_USER_LIBBIN.

libs ("libtimeVaryingFromMatlab.so");

libs ("libtimeVaryingFromMatlabScalar.so");

Note that, the following transport and thermodynamic properties are used in this case (Refer
to constant/transportProperties, constant/thermodynamicProperties files in the case direc-
tory):

1. Dynamic viscosity (µ): 0.001 kgm−1s−1

2. Reference Pressure (p0): 101325 Pa

3. Reference density (ρ0): 1000 kgm−3

19

4. ψ: 1e− 06 s2m−2

These values correspond to a speed of sound in water of 1000m/s (refer eq. 1.2 and eq. 1.7).
The following MATLAB script (MyScript.m) was used in this test case.

1 v_in=inputFromCpp2;

2 if (ii==1)

3 outputToCpp1(1)=0;

4 outputToCpp1(2)=98100;

5 fileID = fopen('vel_in.txt','w');

6 fprintf(fileID,'%6.3f %8.4f %12.4f\n',[0 0 0]);

7 fclose(fileID);

8 else

9 if (ii==2)

10 t_start=0;

11 else

12 t_start=t_old1;

13 end

14 fileID = fopen('vel_in.txt','at');

15 wr=[inputFromCpp1 v_in inputFromCpp3];

16 fprintf(fileID,'%6.3f %8.3f %12.4f\n',wr);

17 fclose(fileID);

18

19 t_end=inputFromCpp1;

20 %Now calling simulink

21 [time,uo,out]=sim('elementary1',[t_start t_end],...

22 simset('OutputVariables', 'ty', 'FinalStateName', 'xFinal'));

23 outputToCpp1(1) = out(end); %Data to OpenFOAM

24 outputToCpp1(2) = inputFromCpp3;

25 end

The if condition in line 2 corresponds to the first time MATLAB is called from OpenFOAM. This
is for initialization of velocity and pressure at the outlet patch. In lines 21-22 Simulink is called to
obtain the variation of velocity with time and finally, in lines 23-24, the velocity and pressure values
are sent to OpenFOAM.

Also, to ensure that the values sent from OpenFOAM is well received in MATLAB and vice-vera,
”Info” statements were provided at appropriate places in the updateCoeffs() function of the velocity
boundary condition (given below for reference). These will be reflected in the log file while running
the simulation. Special key words were used to pick-up these lines using the ’grep’ linux command.
On the other hand in MATLAB, the incoming values are written to a file (refer to lines 5-7 and
14-17) in the above MATLAB script. These can be compared to check the communication between
OpenFOAM and MATLAB.

void Foam::timeVaryingFromMatlabFvPatchVectorField::updateCoeffs()

{

.

.

double UPatch = meanVelocity;

Info<<"U_out to MATLAB:"<<UPatch<<endl;

.

double pPatch=pPatchInternalAverage;

Info<<"P_out to MATLAB:"<<pPatch<<endl;

.

20

double* output = mlObj.matlabCallScript1(script,t(),UPatch,pPatch);

Info<<"U_in from MATLAB"<<output[0]<<endl;

Info<<"P_in from MATLAB"<<output[1]<<endl;

}

Subsequently, the key-words- ’U out’, ’P out’,’U in’ and ’P in’ can be used to extract these lines
using the grep command.
Since symmetric boundary condition is used for the walls, the simulation would capture only changes
along the y-axis. In other words, though the simulation is called a 3D simulation, it captures flow
properties only in 1 dimension. Therefore to be more computationally efficient, use only 1 cell in
x and z directions (change in the constant/polyMesh/blockMeshDict file) and use the ’empty’
boundary condition for the walls (change in the 0/U and 0/p files).
Create the mesh and run the case.

blockMesh

checkMesh

mySonicLiquidFoam >& log&

After successful completion of the simulation, to extract the pressure values that were given as input
to MATLAB, the following linux command.

grep 'P_out' log > P_out

Compare the values of pressures in the file P_out with the file written from MATLAB. Similarly the
velocity values can also compared with the following command.

grep 'U_out' log > U_out

To visualize the results in paraFoam, use the following:

paraFoam -builtin

The flag ’-builtin’ ensures that the value in time directories is used for the patch fields instead of
computing it all over again.
The following results were obtained for this case.
The time history of static pressure at the exit of the pipe and that of the velocity at a position 500m
upstream of the exit (ie., middle of the pipe) are plotted. Also, the results are compared with the
ones obtained in the first (3D CFD) test case.

21

Figure 2.2: Time histories of static pressure at duct exit

Figure 2.3: Time histories of velocity at 0.5L

The results show that pressure and velocity are exchanged at each time-step between OpenFOAM
and MATLAB/Simulink.

22

2.2.2 Test Case - 2

In this test case a two-way coupling will be established at every time step between a 3D simulation
in OpenFOAM and a 1D simulation in Simulink, to analyse water hammer in a pipe flow.
Copy the case directory.

OF4x

cp -r $HOME/SudharsanV/Cases/Coupled_1D3D $FOAM_RUN

run

cd Coupled_1D3D $FOAM_RUN

An existing Simulink tutorial case [4] on water hammer effect is chosen. The tutorial case is a part
of the MATLAB Simulink installation package. This can be accessed by typing sh_segmented_

pipeline_test_rig in the MATLAB (R2015b) command window. Note that, this command is not
the same for all versions of MATLAB/ Simulink (Refer to documentation corresponding to specific
version). In this case the water hammer effect is analysed on a pipe of length 25m and diameter
of 0.03m. The pipe is of type ’segmented pipeline’ and has 5 segments. Upstream of the pipe, is a
constant pressure source. The pipe is connected to a valve at its exit. The valve is initially open and
the water hammer effect is observed when the valve is controlled by a signal that shuts the valve
and reopens it in a very short interval of time (Figure.2.4). However, some small modifications are
done to the case to perfectly suit the requirements of the current study. The modifications are,

1. The segmented pipe is reconstructed using the basic blocks (refer to documentation on seg-
mented pipes by MathWorks [5]). This enables the possibility of having a square cross-section.

2. The fluid is changed from ’Hydraulic’ to ’Custom Hydraulic’ and the parameters like density,
bulk modulus and kinematic viscosity are set to match those used in the 3-D simulation and
hence retain the same value (1000m/s) of speed of sound in water.

3. The frictional effects are removed in order to stay consistent with the 3-D counterpart.

Figure 2.4: Valve control signal (positive value of signal refers to valve closing)

23

Figure 2.5: The 1D - 3D Configuration

To couple this case with OpenFOAM, the domain is divided into two parts, see Fig. 2.5. The
reservoir and the pipe downstream of it (for length 10m) constitutes one part. The remaining pipe
of length 15m along with the valve at its exit constitutes the other. The former will be solved in
3D using OpenFOAM and the latter in Simulink. These two simulations are coupled. This coupled
domain will be simulated for a total of 3s.

The Simulink model is to be changed for the coupled configuration. Firstly, the length is changed to
15m. The pressure source is programed to accept values from OpenFOAM during each time step.
The first segment and the blocks upstream of it are programmed to be initialized with flow rate
(velocity) and pressure from OpenFOAM, at each time step. The pressure is probed from segment
1 and the flow rate (Q = UA) is probed upstream of segment 1. These velocity and pressure values
are returned to OpenFOAM. Additional flow rate and pressure probes are placed to initialize the
simulation each time Simulink is called from OpenFOAM.
Note: The final Simulink file, after incorporating the changes is saved as WaterHammer.slx and is
placed in the case directory. No modification is required to any file in the case directory for this test
case.
The coupling is between a 3D and a 1D domain. This certainly implies there is an interface where
the exchange of data occurs. In this case it happens to be at the outlet of the 3D domain and at
the inlet to the 1D domain. The outlet of the 3D domain is two-dimensional. Therefore data at
this side of the interface are 2-D fields. Where as, the 1D side of this interface demands two values
(one for velocity and one for pressure). Therefore the average pressure and average y-component of
velocity over the area of the outlet patch in the 3D domain is computed and delivered to the 1D
simulation as inputs.
The over all working of the coupled simulations is as follows:

1. At time tn, OpenFOAM delivers velocity and pressure values at the outlet patch corresponding
to time tn−1 to Simulink.

2. 1D computation is performed in Simulink with these values from time tn−1 to tn. Simulink
solves the 1D problem by numerical integration using a number of intermediate time steps
between tn−1 and tn.

3. Simulink returns the resulting velocity and pressure values (at tn) to OpenFOAM.

4. 3D flow computations are performed in OpenFOAM.

Similar to the previous test case, a MATLAB script links OpenFOAM with Simulink. This script
named MyScript.m is placed in the case directory and is given below for reference.

24

1 Area=0.0266*0.0266; %Area of the square pipe

2 P_OF = inputFromCpp3; %Data From OpenFOAM

3 Pi=P_OF;

4 Qi=inputFromCpp2*Area; %Data From OpenFOAM

5 if (ii==1) %Initialization of fields

6 outputToCpp1(1)=0;

7 outputToCpp1(2)=10e5;

8 fileID = fopen('p_out.txt','w');

9 fprintf(fileID,'%8.4f %12.3f %24.12f\n',[0 0 0]);

10 fclose(fileID);

11 else

12 if (ii==2) %First time step of the 3D simulation

13 t_start=0;

14 P2=P_OF; P3=P_OF; P4=P_OF; P5=P_OF;

15 Q2=Qi;Q3=Qi; Q4=Qi;Q5=Qi;

16

17 else %From the second time step

18 t_start=t_old1;

19 load('IC.mat')

20 P2=ic(1);P3=ic(2);P4=ic(3);P5=ic(4);

21 Q2=ic(5);Q3=ic(6);Q4=ic(7);Q5=ic(8);

22 end

23 t_end=inputFromCpp1;

24 %Now calling simulink

25 [time,uo,out]=sim('WaterHammer',[t_start t_end],...

26 simset('OutputVariables', 'ty', 'FinalStateName', 'xFinal'));

27 outputToCpp1(1) = round((out(end,1)/Area),3); %Data to OpenFOAM

28 outputToCpp1(2) = out(end,3);

29 p_o=[time out(:,2) out(:,12)];

30 for i=1:size(p_o,1)

31 fileID = fopen('p_out.txt','at');

32 fprintf(fileID,'%8.4f %12.3f %24.12f\n',p_o(i,:));

33 fclose(fileID);

34 end

35 ic = out (end,4:11); %Write initial conditions for next time step

36 filename = 'IC.mat';

37 save (filename,'ic');

38 end

The inputs from OpenFOAM are stored to local MATLAB variables (Lines 2-4). The outlet patch
in the 3-D part of the simulation is initialized when ii = 1, that is the first time MATLAB is called
from OpenFOAM (Lines 5-7). From ii = 2, the 1-D part of the simulation computes and returns
the boundary value for the outlet of the 3-D part of the simulation. Lines 25-26 call Simulink.
In Lines 27-28, velocity and pressure values resulting from the 1-D computations are returned to
OpenFOAM. The fprintf commands are used to write the pressure at the last segment to a file,
which will be discussed as the results for this test case. Note that, at every 3D time step MATLAB
is called from OpenFOAM. Simulink called (Lines 25-26) in the Matlab code has no memory of the
values corresponding to the previous 3D time step. Hence each of the blocks in Simulink need to
be initialized with the values obtained at the end of previous 3D time step. This requires storing
the velocity and pressure values in the blocks at the end of each 3D time step (Lines 35-37) and the
initialization of the blocks with these values at the beginning of each new 3D time step (Lines 20-21).

Since symmetric boundary condition is used for the walls (in the 3D part of the simulation), the
simulation would capture only changes along the y-axis. In other words, though the simulation

25

is called a 3D simulation, it captures flow properties only in 1 dimension. Therefore to be more
computationally efficient, use only 1 cell in x and z directions (change in the constant/polyMesh/

blockMeshDict file) and use the ’empty’ boundary condition for the walls (change in the 0/U and
0/p files).
Create the mesh and run the case.

blockMesh

checkMesh

mySonicLiquidFoam >& log&

The performance of the coupled simulation is compared with pure 1D simulation for this pipe flow
test case by comparing time histories of the static pressure at the duct exit as shown in Figure. 2.6.

Figure 2.6: Validation of coupled 1D - 3D simulation results (Time History of Pressure)

It is evident that these results are not in perfect agreement with each other. However, the physical
phenomena occurring at various important instances are similar. For example, the peak pressure
can be observed in both the cases when the valve is shut. Also, the drop in pressure when the valve
reopens can be observed in both these configurations.

26

Chapter 3

Conclusion

A two-way communication between OpenFOAM and MATLAB/ Simulink has been established in
this work by means of two new boundary conditions. However, looking at the accuracy of the results,
it is quite evident that there is a large scope for improvising the implementation of the coupled 1-D
3-D simulation. Further, the boundary conditions developed in this work timeVaryingFromMatlab

and timeVaryingFromMatlabScalar are generic. That is they are not specific to any solver or any
specific scalar or vector flow variable. So these boundary conditions can be put to test in various
other applications for coupling OpenFOAM with MATLAB.

27

Study Questions

1. What causes water hammer?

2. State the Joukowsky equation.

3. Which algorithm is the sonicLiquidFoam solver based on?

4. What is the purpose of the engEvalString function?

5. What is the command to get the template for a fixed value scalar boundary condition?

6. Why is a single value of velocity sent from OpenFOAM to MATLAB/ Simulink at the interface
of the coupled simulation (described in the tutorial)?

28

Bibliography

[1] C. Wang, H. Nilsson, J. Yang, O. Petit, 1D-3D coupling for hydraulic system transient simula-
tions, Computer Physics Communications (2016), http://dx.doi.org/10.1016/j.cpc.2016.09.007

[2] Johannes Palm, Project Work: Connecting OpenFOAM with MATLAB, CFD with opensource
software-2012.
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2012/

[3] Previous Releases: System Requirements and Supported Compilers
se.mathworks.com/support/sysreq/previous_releases.html

[4] Segmented Pipeline Test Rig
https://se.mathworks.com/help/releases/R2015b/physmod/hydro/examples/

segmented-pipeline-test-rig.html

[5] Segmented Pipeline in Simulink
https://se.mathworks.com/help/physmod/hydro/ref/segmentedpipeline.html

29

Appendix

Source Code

File: externalPipe/myFirstMatlabPipe/myFirstMatlabPipe.H

// Filename: myFirstMatlabPipe.H //

#ifndef myFirstMatlabPipe_H

#define myFirstMatlabPipe_H

#include "engine.h"

#include "string.h"

using namespace std;

class myFirstMatlabPipe

{

// Type definition //

// Private data objects //

Engine *eMatlabPtr;

// Number of calltimes //

int ii;

public:

// Constructor //

myFirstMatlabPipe();

// Destructor //

virtual ~myFirstMatlabPipe();

// Send and return a double array to a matlab script //

virtual double* matlabCallScript1

(const char* matlabFilename,double inputArg1,

double inputArg2, double inputArg3) const;

// Close the pipe to MATLAB //

virtual void close() const;

};

#endif

30

File: externalPipe/myFirstMatlabPipe/myFirstMatlabPipe.C

// Filename: myFirstMatlabPipe.C //

#include<iostream>

#include<cmath>

#include "engine.h"

#include "myFirstMatlabPipe.H"

//

using namespace std;

// Constructor //

myFirstMatlabPipe::myFirstMatlabPipe()

{

cout << "Matlab engine pointer initialized" << endl;

// Create matlab engine pointer //

eMatlabPtr=engOpen(NULL);

// Create a matlab call no. iterator ii

engEvalString(eMatlabPtr,"ii=0;");

}

// Destructor //

myFirstMatlabPipe::~myFirstMatlabPipe()

{};

double* myFirstMatlabPipe::matlabCallScript1

(const char* matlabFilename,double inputArg1,

double inputArg2, double inputArg3) const

{

// Increase iterator value //

engEvalString(eMatlabPtr,"ii=ii+1;");

// Create scalar mxArray object compatible with MATLAB and C++ //

mxArray *inMxArray1 = mxCreateDoubleMatrix(1,1,mxREAL);

double *inPtr1 = mxGetPr(inMxArray1);

// Send value of inMxArray to MATLAB //

inPtr1[0] = inputArg1;

engPutVariable(eMatlabPtr,"inputFromCpp1",inMxArray1);

mxArray *inMxArray2 = mxCreateDoubleMatrix(1,1,mxREAL);

double *inPtr2 = mxGetPr(inMxArray2);

// Send value of inMxArray to MATLAB //

inPtr2[0] = inputArg2;

engPutVariable(eMatlabPtr,"inputFromCpp2",inMxArray2);

mxArray *inMxArray3 = mxCreateDoubleMatrix(1,1,mxREAL);

double *inPtr3 = mxGetPr(inMxArray3);

// Send value of inMxArray to MATLAB //

inPtr3[0] = inputArg3;

engPutVariable(eMatlabPtr,"inputFromCpp3",inMxArray3);

// Execute MATLAB script //

engEvalString(eMatlabPtr,matlabFilename);

31

// Extract value to C++ and return //

mxArray *outMxArray1 = engGetVariable(eMatlabPtr,"outputToCpp1");

double *outPtr1 = mxGetPr(outMxArray1);

engEvalString(eMatlabPtr,"t_old1=inputFromCpp1");

return outPtr1;

};

void myFirstMatlabPipe::close() const

{

engClose(eMatlabPtr);

};

File: externalPipe/Make/files

myFirstMatlabPipe/myFirstMatlabPipe.C

LIB = $(FOAM_USER_LIBBIN)/libexternalMatlabPipes

File: externalPipe/Make/options

EXE_INC = \

-Wl,-rpath,/chalmers/sw/sup64/matlab-2015b/bin/glnxa64 \

-I/chalmers/sw/sup64/matlab-2015b/extern/include

LIB_LIBS = \

-L/chalmers/sw/sup64/matlab-2015b/bin/glnxa64 \

-leng \

-lmx

File: timeVaryingFromMatlab/timeVaryingFromMatlabFvPatchVectorField.H

/*---*\

========= |

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration |

\\ / A nd | Copyright (C) 2016 OpenFOAM Foundation

\\/ M anipulation |

License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it

under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

for more details.

You should have received a copy of the GNU General Public License

along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

32

Class

Foam::timeVaryingFromMatlabFvPatchVectorField

Group

grpGenericBoundaryConditions

Description

This boundary condition provides a timeVaryingFromMatlab condition,

calculated as:

\f[

Q = Q_{0} + Q_{p} + s*Q_{t}

\f]

where

\vartable

s | single scalar value [units]

Q_{0} | single vector value [units]

Q_{p} | vector field across patch [units]

Q_{t} | vector function of time [units]

\endtable

Usage

\table

Property | Description | Req'd? | Default

scalarData | single scalar value | yes |

data | single vector value | yes |

fieldData | vector field across patch | yes |

timeVsData | vector function of time | yes |

wordData | word, eg name of data object | no | wordDefault

\endtable

Example of the boundary condition specification:

\verbatim

<patchName>

{

type timeVaryingFromMatlab;

scalarData -1;

data (1 0 0);

fieldData uniform (3 0 0);

timeVsData table (

(0 (0 0 0))

(1 (2 0 0))

);

wordName anotherName;

value uniform (4 0 0); // optional initial value

}

\endverbatim

SourceFiles

timeVaryingFromMatlabFvPatchVectorField.C

---/

33

#ifndef timeVaryingFromMatlabFvPatchVectorField_H

#define timeVaryingFromMatlabFvPatchVectorField_H

#include "fixedValueFvPatchFields.H"

#include "myFirstMatlabPipe.H"

#include "Function1.H"

// * //

namespace Foam

{

/*---*\

Class timeVaryingFromMatlabFvPatchVectorField Declaration

---/

class timeVaryingFromMatlabFvPatchVectorField

:

public fixedValueFvPatchVectorField

{

// Private data

// Private Member Functions

// Matla file name

string matlabFile_;

myFirstMatlabPipe mlObj;

// Velocity vector

vector vel_;

//current time index

label curTimeIndex_;

//- Return current time

scalar t() const;

//Pressure

scalar prs_;

public:

//- Runtime type information

TypeName("timeVaryingFromMatlab");

// Constructors

//- Construct from patch and internal field

timeVaryingFromMatlabFvPatchVectorField

(

const fvPatch&,

const DimensionedField<vector, volMesh>&

);

//- Construct from patch, internal field and dictionary

timeVaryingFromMatlabFvPatchVectorField

34

(

const fvPatch&,

const DimensionedField<vector, volMesh>&,

const dictionary&

);

//- Construct by mapping given fixedValueTypeFvPatchField

// onto a new patch

timeVaryingFromMatlabFvPatchVectorField

(

const timeVaryingFromMatlabFvPatchVectorField&,

const fvPatch&,

const DimensionedField<vector, volMesh>&,

const fvPatchFieldMapper&

);

//- Construct as copy

timeVaryingFromMatlabFvPatchVectorField

(

const timeVaryingFromMatlabFvPatchVectorField&

);

//- Construct and return a clone

virtual tmp<fvPatchVectorField> clone() const

{

return tmp<fvPatchVectorField>

(

new timeVaryingFromMatlabFvPatchVectorField(*this)

);

}

//- Construct as copy setting internal field reference

timeVaryingFromMatlabFvPatchVectorField

(

const timeVaryingFromMatlabFvPatchVectorField&,

const DimensionedField<vector, volMesh>&

);

//- Construct and return a clone setting internal field reference

virtual tmp<fvPatchVectorField> clone

(

const DimensionedField<vector, volMesh>& iF

) const

{

return tmp<fvPatchVectorField>

(

new timeVaryingFromMatlabFvPatchVectorField

(

*this,

iF

)

);

}

35

// Member functions

// Evaluation functions

vector& vel()

{

return vel_;

}

scalar prs() const

{

return prs_;

}

//- Update the coefficients associated with the patch field

virtual void updateCoeffs();

//- Write

virtual void write(Ostream&) const;

};

// * //

} // End namespace Foam

// * //

#endif

// *** //

File: timeVaryingFromMatlab/timeVaryingFromMatlabFvPatchVectorField.C

/*---*\

========= |

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration |

\\ / A nd | Copyright (C) 2016 OpenFOAM Foundation

\\/ M anipulation |

License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it

under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

36

for more details.

You should have received a copy of the GNU General Public License

along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

---/

#include "timeVaryingFromMatlabFvPatchVectorField.H"

#include "addToRunTimeSelectionTable.H"

#include "fvPatchFieldMapper.H"

#include "volFields.H"

#include "surfaceFields.H"

// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //

Foam::scalar Foam::timeVaryingFromMatlabFvPatchVectorField::t() const

{

return db().time().timeOutputValue();

}

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

Foam::timeVaryingFromMatlabFvPatchVectorField::

timeVaryingFromMatlabFvPatchVectorField

(

const fvPatch& p,

const DimensionedField<vector, volMesh>& iF

)

:

fixedValueFvPatchVectorField(p, iF),

matlabFile_("MyScript;"),

vel_(0,0,0),

curTimeIndex_(-1),

prs_(0.0)

{

Info<<"Using BC from Matlab"<<endl;

}

Foam::timeVaryingFromMatlabFvPatchVectorField::

timeVaryingFromMatlabFvPatchVectorField

(

const fvPatch& p,

const DimensionedField<vector, volMesh>& iF,

const dictionary& dict

)

:

fixedValueFvPatchVectorField(p, iF),

matlabFile_("MyScript;"),//matlabFile_(dict.lookup("matlabFile")),

vel_(0,0,0),

curTimeIndex_(-1),

37

prs_(0.0)

{

Info<<"Using BC from Matlab"<<endl;

fixedValueFvPatchVectorField::evaluate();

/*

//Initialise with the value entry if evaluation is not possible

fvPatchVectorField::operator=

(

vectorField("value", dict, p.size())

);

*/

}

Foam::timeVaryingFromMatlabFvPatchVectorField::

timeVaryingFromMatlabFvPatchVectorField

(

const timeVaryingFromMatlabFvPatchVectorField& ptf,

const fvPatch& p,

const DimensionedField<vector, volMesh>& iF,

const fvPatchFieldMapper& mapper

)

:

fixedValueFvPatchVectorField(ptf, p, iF, mapper),

vel_(ptf.vel_),

curTimeIndex_(-1),

prs_(ptf.prs_)

{}

Foam::timeVaryingFromMatlabFvPatchVectorField::

timeVaryingFromMatlabFvPatchVectorField

(

const timeVaryingFromMatlabFvPatchVectorField& ptf

)

:

fixedValueFvPatchVectorField(ptf),

vel_(ptf.vel_),

curTimeIndex_(-1),

prs_(ptf.prs_)

{}

Foam::timeVaryingFromMatlabFvPatchVectorField::

timeVaryingFromMatlabFvPatchVectorField

(

const timeVaryingFromMatlabFvPatchVectorField& ptf,

const DimensionedField<vector, volMesh>& iF

)

:

38

fixedValueFvPatchVectorField(ptf, iF),

vel_(ptf.vel_),

curTimeIndex_(-1),

prs_(ptf.prs_)

{}

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //

void Foam::timeVaryingFromMatlabFvPatchVectorField::updateCoeffs()

{

if (updated())

{

return;

}

if (curTimeIndex_ != this->db().time().timeIndex())

{

if (t()>0.0)

{

//Read the velocity values from the patch

const fvPatchField<vector>& UPatch1 =

patch().lookupPatchField<volVectorField, vector>("U");

//Compute the average velocity and convert to scalar value

scalar meanVelocity=gSum(UPatch1.patchInternalField()*

mag(patch().Sf())).y() / gSum(mag(patch().Sf()));

double UPatch = meanVelocity;

Info<<"U_out to Matlab:"<<UPatch<<endl;

//Read the pressure values from the patch

const fvPatchField<scalar>& pPatch2 =

patch().lookupPatchField<volScalarField, scalar>("p");

//Compute the average pressure and convert to scalar value

scalar pPatchInternalAverage = gAverage(pPatch2.patchInternalField());

double pPatch=pPatchInternalAverage;

Info<<"P_out to Matlab:"<<pPatch<<endl;

const char *script=matlabFile_.c_str();

//Call Matlab

double* output = mlObj.matlabCallScript1(script,t(),UPatch,pPatch);

vel_.y()=output[0];

Info<<"U_in from Matlab"<<output[0]<<endl;

prs_=output[1];

Info<<"P_in from Matlab"<<output[1]<<endl;

fixedValueFvPatchField::operator==(vel_);

}

else

{

const char *script=matlabFile_.c_str();

double* output = mlObj.matlabCallScript1(script,t(),0,0);

vel_.y()=output[0];

prs_=output[1];

fixedValueFvPatchField::operator==(vel_);

}

39

curTimeIndex_ = this->db().time().timeIndex();

}

fixedValueFvPatchField::updateCoeffs();

}

void Foam::timeVaryingFromMatlabFvPatchVectorField::write

(

Ostream& os

) const

{

fvPatchVectorField::write(os);

os.writeKeyword("Velocity") << vel_ << token::END_STATEMENT << nl;

writeEntry("value", os);

}

// * * * * * * * * * * * * * * Build Macro Function * * * * * * * * * * * * //

namespace Foam

{

makePatchTypeField

(

fvPatchVectorField,

timeVaryingFromMatlabFvPatchVectorField

);

}

// *** //

//

File: timeVaryingFromMatlab/Make/files

timeVaryingFromMatlabFvPatchVectorField.C

LIB = $(FOAM_USER_LIBBIN)/libtimeVaryingFromMatlab

File: timeVaryingFromMatlab/Make/options

EXE_INC = \

-I$(LIB_SRC)/finiteVolume/lnInclude \

-I$(LIB_SRC)/meshTools/lnInclude \

-Wl,-rpath,/chalmers/sw/sup64/matlab-2015b/bin/glnxa64 \

-I/chalmers/sw/sup64/matlab-2015b/extern/include \

-I$(WM_PROJECT_USER_DIR)/src/externalPipe/myFirstMatlabPipe

LIB_LIBS = \

-lfiniteVolume \

-lmeshTools \

-L/chalmers/sw/unsup64/OpenFOAM/ThirdParty-4.x/platforms/linux64/gcc-4.8.5/lib64 \

-lstdc++ \

-L/chalmers/sw/sup64/matlab-2015b/bin/glnxa64 \

-leng \

40

-lmx \

-L$(FOAM_USER_LIBBIN) \

-lexternalMatlabPipes

timeVaryingFromMatlabScalar/timeVaryingFromMatlabScalarFvPatchScalarField.H

/*---*\

========= |

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration |

\\ / A nd | Copyright (C) 2016 OpenFOAM Foundation

\\/ M anipulation |

License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it

under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

for more details.

You should have received a copy of the GNU General Public License

along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Class

Foam::timeVaryingFromMatlabScalarFvPatchScalarField

Group

grpGenericBoundaryConditions

Description

This boundary condition provides a timeVaryingFromMatlabScalar condition,

calculated as:

\f[

Q = Q_{0} + Q_{p} + s*Q_{t}

\f]

where

\vartable

s | single scalar value [units]

Q_{0} | single scalar value [units]

Q_{p} | scalar field across patch [units]

Q_{t} | scalar function of time [units]

\endtable

Usage

\table

Property | Description | Req'd? | Default

41

scalarData | single scalar value | yes |

data | single scalar value | yes |

fieldData | scalar field across patch | yes |

timeVsData | scalar function of time | yes |

wordData | word, eg name of data object | no | wordDefault

\endtable

Example of the boundary condition specification:

\verbatim

<patchName>

{

type timeVaryingFromMatlabScalar;

scalarData -1;

data 1;

fieldData uniform 3;

timeVsData table (

(0 0)

(1 2)

);

wordName anotherName;

value uniform 4; // optional initial value

}

\endverbatim

SourceFiles

timeVaryingFromMatlabScalarFvPatchScalarField.C

---/

#ifndef timeVaryingFromMatlabScalarFvPatchScalarField_H

#define timeVaryingFromMatlabScalarFvPatchScalarField_H

#include "fixedValueFvPatchFields.H"

#include "Function1.H"

// * //

namespace Foam

{

/*---*\

Class timeVaryingFromMatlabScalarFvPatchScalarField Declaration

---/

class timeVaryingFromMatlabScalarFvPatchScalarField

:

public fixedValueFvPatchScalarField

{

// Private data

//pressure

scalar pr_;

//current time index

42

label curTimeIndex_;

// Private Member Functions

//- Return current time

scalar t() const;

public:

//- Runtime type information

TypeName("timeVaryingFromMatlabScalar");

// Constructors

//- Construct from patch and internal field

timeVaryingFromMatlabScalarFvPatchScalarField

(

const fvPatch&,

const DimensionedField<scalar, volMesh>&

);

//- Construct from patch, internal field and dictionary

timeVaryingFromMatlabScalarFvPatchScalarField

(

const fvPatch&,

const DimensionedField<scalar, volMesh>&,

const dictionary&

);

//- Construct by mapping given fixedValueTypeFvPatchField

// onto a new patch

timeVaryingFromMatlabScalarFvPatchScalarField

(

const timeVaryingFromMatlabScalarFvPatchScalarField&,

const fvPatch&,

const DimensionedField<scalar, volMesh>&,

const fvPatchFieldMapper&

);

//- Construct as copy

timeVaryingFromMatlabScalarFvPatchScalarField

(

const timeVaryingFromMatlabScalarFvPatchScalarField&

);

//- Construct and return a clone

virtual tmp<fvPatchScalarField> clone() const

{

return tmp<fvPatchScalarField>

43

(

new timeVaryingFromMatlabScalarFvPatchScalarField(*this)

);

}

//- Construct as copy setting internal field reference

timeVaryingFromMatlabScalarFvPatchScalarField

(

const timeVaryingFromMatlabScalarFvPatchScalarField&,

const DimensionedField<scalar, volMesh>&

);

//- Construct and return a clone setting internal field reference

virtual tmp<fvPatchScalarField> clone

(

const DimensionedField<scalar, volMesh>& iF

) const

{

return tmp<fvPatchScalarField>

(

new timeVaryingFromMatlabScalarFvPatchScalarField

(

*this,

iF

)

);

}

// Member functions

// Evaluation functions

scalar& p()

{

return pr_;

}

//- Update the coefficients associated with the patch field

virtual void updateCoeffs();

//- Write

virtual void write(Ostream&) const;

};

// * //

} // End namespace Foam

// * //

#endif

44

// *** //

timeVaryingFromMatlabScalar/timeVaryingFromMatlabScalarFvPatchScalarField.C

/*---*\

========= |

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration |

\\ / A nd | Copyright (C) 2016 OpenFOAM Foundation

\\/ M anipulation |

License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it

under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

for more details.

You should have received a copy of the GNU General Public License

along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

---/

#include "timeVaryingFromMatlabScalarFvPatchScalarField.H"

#include "timeVaryingFromMatlabFvPatchVectorField.H"

#include "addToRunTimeSelectionTable.H"

#include "fvPatchFieldMapper.H"

#include "volFields.H"

#include "surfaceFields.H"

// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //

Foam::scalar Foam::timeVaryingFromMatlabScalarFvPatchScalarField::t() const

{

return db().time().timeOutputValue();

}

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

Foam::timeVaryingFromMatlabScalarFvPatchScalarField::

timeVaryingFromMatlabScalarFvPatchScalarField

(

const fvPatch& p,

const DimensionedField<scalar, volMesh>& iF

)

:

45

fixedValueFvPatchScalarField(p, iF),

pr_(0),

curTimeIndex_(-1)

{

}

Foam::timeVaryingFromMatlabScalarFvPatchScalarField::

timeVaryingFromMatlabScalarFvPatchScalarField

(

const fvPatch& p,

const DimensionedField<scalar, volMesh>& iF,

const dictionary& dict

)

:

fixedValueFvPatchScalarField(p, iF),

pr_(0),

curTimeIndex_(-1)

{

fixedValueFvPatchScalarField::evaluate();

/*

//Initialise with the value entry if evaluation is not possible

fvPatchScalarField::operator=

(

scalarField("value", dict, p.size())

);

*/

}

Foam::timeVaryingFromMatlabScalarFvPatchScalarField::

timeVaryingFromMatlabScalarFvPatchScalarField

(

const timeVaryingFromMatlabScalarFvPatchScalarField& ptf,

const fvPatch& p,

const DimensionedField<scalar, volMesh>& iF,

const fvPatchFieldMapper& mapper

)

:

fixedValueFvPatchScalarField(ptf, p, iF, mapper),

pr_(ptf.pr_),

curTimeIndex_(-1)

{}

Foam::timeVaryingFromMatlabScalarFvPatchScalarField::

timeVaryingFromMatlabScalarFvPatchScalarField

(

46

const timeVaryingFromMatlabScalarFvPatchScalarField& ptf

)

:

fixedValueFvPatchScalarField(ptf),

pr_(ptf.pr_),

curTimeIndex_(-1)

{}

Foam::timeVaryingFromMatlabScalarFvPatchScalarField::

timeVaryingFromMatlabScalarFvPatchScalarField

(

const timeVaryingFromMatlabScalarFvPatchScalarField& ptf,

const DimensionedField<scalar, volMesh>& iF

)

:

fixedValueFvPatchScalarField(ptf, iF),

pr_(ptf.pr_),

curTimeIndex_(-1)

{}

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //

void Foam::timeVaryingFromMatlabScalarFvPatchScalarField::updateCoeffs()

{

if (updated())

{

return;

}

if (curTimeIndex_ != this->db().time().timeIndex())

{

const fvPatchField<vector>& UPatch1 =

this->patch().template lookupPatchField<volVectorField, vector>("U");

const timeVaryingFromMatlabFvPatchVectorField& UPatch2 =

refCast<const timeVaryingFromMatlabFvPatchVectorField>(UPatch1);

scalar pr;

pr = UPatch2.prs();

pr_=pr;

fixedValueFvPatchField::operator==(pr_);

curTimeIndex_ = this->db().time().timeIndex();

}

fixedValueFvPatchField::updateCoeffs();

}

void Foam::timeVaryingFromMatlabScalarFvPatchScalarField::write

(

Ostream& os

) const

{

47

fvPatchScalarField::write(os);

os.writeKeyword("Pressure") << pr_ << token::END_STATEMENT << nl;

writeEntry("value", os);

}

// * * * * * * * * * * * * * * Build Macro Function * * * * * * * * * * * * //

namespace Foam

{

makePatchTypeField

(

fvPatchScalarField,

timeVaryingFromMatlabScalarFvPatchScalarField

);

}

// *** //

timeVaryingFromMatlabScalar/Make/files

timeVaryingFromMatlabScalarFvPatchScalarField.C

LIB = $(FOAM_USER_LIBBIN)/libtimeVaryingFromMatlabScalar

timeVaryingFromMatlabScalar/Make/options

EXE_INC = \

-I$(LIB_SRC)/finiteVolume/lnInclude \

-I$(LIB_SRC)/meshTools/lnInclude \

-Wl,-rpath,/chalmers/sw/sup64/matlab-2015b/bin/glnxa64 \

-I/chalmers/sw/sup64/matlab-2015b/extern/include \

-I$(WM_PROJECT_USER_DIR)/src/externalPipe/myFirstMatlabPipe \

-I$(WM_PROJECT_USER_DIR)/src/timeVaryingFromMatlab

LIB_LIBS = \

-lfiniteVolume \

-lmeshTools \

-L/chalmers/sw/unsup64/OpenFOAM/ThirdParty-4.x/platforms/linux64/gcc-4.8.5/lib64 \

-lstdc++ \

-L/chalmers/sw/sup64/matlab-2015b/bin/glnxa64 \

-leng \

-lmx \

-L$(FOAM_USER_LIBBIN) \

-lexternalMatlabPipes \

-ltimeVaryingFromMatlab

Test Matlab gcc compatibility using this simple code:
File Name : Mycase.C

48

#include<iostream>

#include<cmath>

#include "engine.h"

using namespace std;

double* matlabCallScript(const char* matlabFilename,double inputArg)

{

Engine *eMatlabPtr;

eMatlabPtr=engOpen(NULL);

// Increase iterator value //

//engEvalString(eMatlabPtr,"ii=ii+1;");

// Create scalar mxArray object compatible with MATLAB and C++ //

mxArray *inMxArray = mxCreateDoubleMatrix(1,1,mxREAL);

double *inPtr = mxGetPr(inMxArray);

// Send value of inMxArray to MATLAB //

inPtr[0] = inputArg;

engPutVariable(eMatlabPtr,"inputFromCpp",inMxArray);

// Execute MATLAB script //

engEvalString(eMatlabPtr,matlabFilename);

// Extract value to C++ and return //

mxArray *outMxArray = engGetVariable(eMatlabPtr,"outputToCpp");

double *outPtr = mxGetPr(outMxArray);

engClose(eMatlabPtr);

return outPtr;

}

int main()

{

double t = 4;

const char *Filename = "MyScript;";

double* Uy = matlabCallScript(Filename,t);

cout<<Uy[0]<<','<<Uy[1]<<endl;

}

File Name: Makefile

all:

gcc -Wall -Wl,-rpath,/chalmers/sw/sup64/matlab-2015b/bin/glnxa64 \

-I/chalmers/sw/sup64/matlab-2015b/extern/include \

-L/chalmers/sw/sup64/matlab-2015b/bin/glnxa64 -leng -lmx \

-L/chalmers/sw/unsup64/OpenFOAM/ThirdParty-4.x/platforms/linux64/gcc-4.8.5/lib64 -lstdc++ \

Mycase.C -o MyCase

File Name: MyScript.m

t1 = 5;

t2 = 200;

t3 = 300;

Vy1 = 0.5;

Vy2 = 0.75;

Vy3 = 1;

49

if (inputFromCpp >= 0 && inputFromCpp < t1)

outputToCpp(1) = 0;

outputToCpp(2) = t1;

else if (inputFromCpp >= t1 && inputFromCpp < t2)

outputToCpp(1) = Vy1;

outputToCpp(2) = t2;

else if (inputFromCpp >= t2 && inputFromCpp < t3)

outputToCpp(1) = Vy2;

outputToCpp(2)=t3;

else

outputToCpp(1) = Vy3;

outpuToCpp(2) = 20;

end

end

end

Compile using the make command
and view the output using ./MyCase

50

