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Abstract

The spatial gas distribution of poly-disperse bubbly flows depends greatly on the

bubble size. To reflect the resulting polycelerity, more than two momentum balance

equations (typically for the gas and liquid phases) have to be considered, as done in

the multifluid approach. The inhomogeneous multiple-size group model follows this

approach, also combined with a population balance model. As an alternative, in a

previous work, an Eulerian quadrature-based moments method (E-QBMM) was

implemented in OpenFOAM; however, only the drag force was included. In this work,

different nondrag forces (lift, wall lubrication, and turbulent dispersion) are added to

enable more complex test cases to be simulated. Simulation results obtained using E-

QBMM are compared with the classical E–E method and validated against experi-

mental data for different test cases. The results show that there is good agreement

between E-QBMM and E–E methods for mono-disperse cases, but E-QBMM can

better simulate the separation and segregation of small and large bubbles.
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1 | INTRODUCTION

Bubbly flows are relevant in many applications belonging to various

industries such as chemicals, pharmaceutics, food and power production,

among others. The prediction of the gas phase (bubble) distribution is of

paramount importance for designing apparatus and optimizing processes.

Many experimental studies have been published showing that interfacial

forces, such as drag, lift, wall lubrication, and turbulent dispersion forces,

are important under the bubbly flow regime.1-3 The drag force considers

the resistance between the phases and, together with buoyancy, deter-

mines the bubble's terminal velocity. The lift force is related to the veloc-

ity gradient in the continuous phase and acts laterally to the bubble

motion. It may change its sign depending on the bubble size, as the lift

force experienced by small spherical bubbles differs from that experi-

enced by large ellipsoidal ones. In upward bubble flows, the lift force

pushes the small bubbles toward the wall and the large bubbles toward

the center of the pipe. The wall lubrication force prevents bubbles from

collecting at the wall. Moreover, the turbulent dispersion force considers

the bubble dispersion due to the effect of turbulent eddies. It is propor-

tional to the gas volume fraction gradient and flattens the corresponding

profiles. It has been shown to improve the stability of the E–E method.4

As shown in Figure 1, all these forces have an effect on the bub-

bles' migration, and as a result the profile of the phase fraction distri-

bution is established as the outcome of multiple factors. In particular,

when only the drag force is included, all the bubbles move upward

with negligible radial migration. The predicted phase fraction is flat-

tened somewhat, since no lateral forces are exerted. If the lift force is

included, the small bubbles tend to move toward the wall forming a

gas volume fraction profile with a maximum directly at the wall. If the

wall lubrication force is also included, the predicted phase fraction

profile exhibits a peak next to the wall, since the wall lubrication force

pushes the bubbles away from the wall. When in addition the turbu-

lence dispersion model is considered, the phase fraction profile is flat-

tened, since it acts as a diffusion term. It should be noted here that

the statement above is quite general. For example, whether the wall

lubrication model developed by Hosokawa et al 5 or Antal et al 6 is
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used, the predicted phase fraction exhibits similar resulting features

with a wall peak. Besides the phase fraction distribution, the gas

holdup is also important. However, the consideration of the column

aspect ratio and its influence on the holdup concerns global parame-

ter. The investigation of critical values is not the objective of this

work. Readers are referred to other works for more information.7-10

Thanks to increasing computational power, computational fluid

dynamics (CFD) methods have become more and more feasible as a

means of examining such complex flows. The macroscopic

Eulerian–Eulerian (E–E) method has been employed extensively to

investigate bubbly flows in many studies.11-17 However, one draw-

back of the classical two-phase E–E method is that it can only be

employed for mono-disperse systems. Here, mono-dispersity refers

to situations in which all the bubbles have the same properties

(e.g., bubbles with identical diameters). In contrast, poly-dispersity

refers to situations in which the properties of the disperse-phase

entities are different for each entity (e.g., bubbles with different

diameters). In practice, mono-disperse bubbly flows are relatively

rare, hence, it will be important to have a modeling framework that

naturally accounts for poly-dispersity. In order to extend the

method to include poly-disperse systems and to allow for the con-

sideration of bubble coalescence and breakup, CFD was coupled

with population balance models and employed to simulate poly-

disperse systems.18-24 In the CFD-PBM coupling procedure, the

mean Sauter diameter is calculated by the PBM and fed into the

momentum interfacial exchange terms. Table 1 shows the different

PBM solving methods. Readers interested in this subject are

referred to another recent work.25 These methods are valid only

for small Stokes flows (e.g., liquid–liquid emulsions with relatively

homogeneous droplet diameters) since the disperse phase is still

convected by one velocity field for all bubble or droplet sizes.26

However, many experimental studies on polydisperse bubbly flows

have shown that, when polydispersity is significant, bubbles tend

to migrate at different velocities depending on their size. These

effects are caused by the fact that interfacial forces depend on the

bubble size; this is particularly important for the lift force, where

the inversion of sign of the lateral lift force in vertical upward bub-

bly flows even causes small and large bubbles move toward oppo-

site directions.27-29

To predict such polydisperse multiphase flows, CFD-PBM cou-

pling was extended to include other multiphase E–E methods, in

which bubbles within a range of sizes are handled as separate phases

(the inhomogeneous multiple-size group [MUSIG] model).34-36

Another solution is to systematically couple the CFD with a more gen-

eral PBM, based on the so-called generalized population balance

equation (GPBE), in which Navier–Stokes equations are employed for

the continuous phase, while the GPBE is employed for the disperse

phase. The GPBE operates based on a number density function (NDF)

that completely defines the polydispersity of the system. In this pro-

cedure, the GPBE is transformed into a set of transport equations for

the moments of the NDF, which are in turn solved numerically using

the finite volume method (FVM), as are all the other governing equa-

tions of the CFD model. This method is also labeled “Eulerian QBMM”

with “Eulerian” referring to the approach for the continuous phase

and “QBMM” denoting the quadrature-based moments method. In

fact, the transport equations for the moments of the NDF are closed

using a quadrature approximation. To model the phase velocity of the

disperse phase, different methods can be chosen, such as the condi-

tional quadrature method of moments (CQMOM) 37 or the velocity

polynomial approximation (VPA) model.38-40 In CQMOM, the disperse

phase velocity is treated as a separate “internal coordinate,” and the

quadrature approximation is used to overcome the closure problem.

The quadrature approximation consists of different abscissas or nodes

that can be thought of as separate bubble classes or “phases.” This

approach was mainly used to predict particle trajectory crossing. In

the VPA model, by contrast, the disperse phase velocity is not for-

mally treated as an independent internal coordinate, and a polynomial

relationship is assumed between the bubble velocity and bubble size.

In this work, we implemented the full set of interfacial momentum

exchange terms in the E-QBMM and validated the algorithm with

experimental data. Specifically, nondrag forces are implemented and

their effects on bubble separation are shown and compared with the

two-phase E–E method. Experimental data taken from the literature

on bubbly flow in pipes resulting in various gas phase radial and axial

distributions were included to validate the algorithm and its imple-

mentation. Model predictions are validated against three upward ver-

tical pipe flow experiments investigated by Žun,41 Banowski et al,29

and Lucas et al,42 which operated at different geometries and differ-

ent superficial velocities. The first two test cases feature the double

peak phase fraction distribution, which corresponds to the polydis-

perse systems. The last one features the wall peak distribution, which
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F IGURE 1 Typical phase fraction profile predicted by CFD for
small bubbles (e.g., d < 5 mm) in vertical upward pipe. Solid line: Only
drag force. Dashed line: Drag + lift force. Dots: Drag + lift + wall
lubrication force. Triangles: Drag + lift + wall lubrication + turbulent
dispersion force

TABLE 1 Different PBM solving methods

PBE solving method References

Quadrature method of moments (QMOM) Mcgraw30

Multiple-size group (MUSIG) method Lo31

Least-square method Dorao and Jakobsen32

Fixed-pivot method Kumar and Ramkrishna33
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corresponds to the monodisperse systems. Our results show that the

wall peak predicted by the fully coupled E-QBMM with a full set of

the momentum interfacial exchange terms is identical to that

predicted using the E–E method. On the other hand, E-QBMM is also

capable of predicting the double peak phase fraction distribution for

poly-disperse systems, since the bubbles of different sizes are trans-

ported at different velocities by the VPA; the predictions agree well

with experimental data.

2 | MODEL DESCRIPTION AND NUMERICAL
DISCRETIZATION

2.1 | Eulerian method for the continuous phase

In the absence of mass transfer between phases, the mass conserva-

tion equation and the momentum balance equation for the continuous

phase is described by

∂ αcρcð Þ
∂t

+r� αcρcUcð Þ= 0, ð1Þ

∂ αcρcUcð Þ
∂t

+r� αcρc Uc�Ucð Þð Þ−r� αcρcRcð Þ= αcrp+ αcρcg−A, ð2Þ

where αc is the phase fraction of the continuous phase, ρc is its den-

sity, and Uc is its average velocity, Rc represents the stress tensor, p is

the average pressure, g is the gravity acceleration vector, and A is the

momentum interface exchange term, which will be discussed in the

next section.

2.2 | GPBE/QBMM for the disperse phase

Considering the NDF n(t, x, d, Vd), the GPBE for the disperse phase

can be written as 38

∂n
∂t

+rX� Vdnð Þ+rVd
� Anð Þ= S, ð3Þ

where Vd is the bubble velocities, S is the possible source term, which

is neglected in this work, A is the continuous rate of change of particle

velocity, or the force per unit mass acting on bubbles (e.g., drag, lift,

etc.), which generally depends on Vd. Equation 3 can be solved by a

direct solver, such as the direct simulation Monte Carlo (DSMC)

method and others, with additional computational cost. Alternatively,

some approximations can be also made. In this work, we employ VPA.

It assumed that the velocity of the elements of the disperse phase

depends on size. A suitable approximation is to use a second-order

polynomial:38

V dð Þ=P0 +P1d+P2d
2, ð4Þ

where d is the particle size and Pi are the velocity polynomial coeffi-

cients (VPCs). Equation 4 can be written in the following

expanded form:

vx dð Þ= p0,x + p1,xd+ p2,xd2,
vy dð Þ= p0,y + p1,yd+ p2,yd2,
vz dð Þ= p0,z + p1,zd+ p2,zd2,

ð5Þ

where vx, vy, vz are the velocity components in the Cartesian coordi-

nate system and pi,x, pi,y, and pi,z are the components of Pi. Once the

VPCs are determined, the conditional particle velocities V(d) can be

updated from the particle size.

To solve Equation 3 numerically with the VPA, the operator split-

ting procedure is employed in this work.38 In the first step of operator

splitting, only convection is considered:

∂n
∂t

+
∂vxn
∂x

+
∂vyn
∂y

+
∂vzn
∂z

= 0: ð6Þ

This equation can be transformed into the mixed-moments trans-

port equations

∂mj,k, l, i
∂t

+
∂mj+1,k, l, i

∂x
+
∂mj,k +1, l, i

∂y
+
∂mj,k, l+1, i

∂z
=0 ð7Þ

by defining of the mixed moments of the NDF:

mj,k, l, i =
ð
vjxv

k
yv

l
zd

idudvdwdd: ð8Þ

When mj,k,l,i in Equation 7 are solved, mj + 1,k,l,i, mj,k + 1,l,i, and

mj,k,l + 1,i need to be known, which implies that Equation 7 is not

closed. In this work, it is closed using a quadrature approximation,

as formulated in the original quadrature method of moments,30 in

which any higher order mixed moment can be calculated as

mj,k, l, i =
XN
β =1

wβvx dβ
� �j

vy dβ
� �k

vz dβ
� �l

diβ , ð9Þ

where wβ and dβ are the weights and abscissas of the quadrature

approximation calculated from the pure moments of the NDF with

respect to bubble size, N is the number of nodes, vx(dβ), vy(dβ), vz(dβ)

are the three components of the bubble velocity and an assumption is

made on the dependence of bubble velocity versus bubble size. The

N weights and abscissas can be calculated from the first 2 N moments

using the moment inversion algorithm (e.g., the Wheeler algorithm ).43

The calculation is done using only the first 2 N moments of the NDF

with respect to bubble size m0,0,0,i with i = 0,1,…2 N‑1. Moreover, the

velocity polynomial coefficients Pi with i = 0, 1, 2 as defined in Equa-

tion 4 can be calculated from the pure moments of the NDF with

respect to bubble size m0,0,0,i by constructing a moment matrix sys-

tem. Then the higher order mixed moments can be calculated based

on Equation 9 and Equation 5, and Equation 7 can be solved using the

higher order realizable FVM.44 Readers interested in the details of the

first step of the operator splitting procedure are invited to refer to our

previous work.40

After the convection terms are updated (the second term on the

R.H.S of Equation 3) in operator splitting procedure step 1, the effect
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of the force term (the third term on the R.H.S of Equation 3) on the

disperse phase velocity needs to be considered. This constitutes the

operator splitting procedure step 2. Because the forces only affect the

velocities, the velocities can be updated with the following ordinary

differential equation (ODE):

αβ
dVβ

dt
=Aβ,buo +Aβ,drag +Aβ, lift +Aβ,wall +Aβ,bubblePres, ð10Þ

where αβ is the phase fraction of the disperse phase with abscissas

(particle size) dβ, Aβ, buo denotes the buoyancy force, Aβ, drag denotes

the drag force, Aβ, lift denotes the lift force, Aβ, wall denotes the wall

lubrication force, and Aβ, bubblePres denotes the bubble pressure force.

The buoyancy force can be modelled as

Aβ,buo = αβg 1−
ρc
ρβ

 !
, ð11Þ

in which g is the gravity acceleration vector and ρβ is the density of

the disperse phase with size dβ. For the bubbly pipe flows investigated

in this work, the buoyant force acting on the radial direction acceler-

ates the bubbles' upward movement. The drag force can instead be

modeled as

Aβ,drag = αβ
3
4
CD,βρc
dβ

jUc−Vβ j Uc−Vβ

� �
, ð12Þ

In vertical upward bubbly flows, the drag force counterbalances

the buoyancy force and this determines bubble's terminal velocity.

The lift force plays a critical role in the prediction of the lateral

behavior of bubbly flows. Therefore, a correct description of the lift

coefficient in bubble columns is crucial in order to model this transver-

sal force correctly. It can be calculated by the following expression:

Aβ, lift = αβCL,β
ρc
ρβ

Uc−Vβ

� �
× r×Ucð Þ, ð13Þ

where CL, β is the lift force coefficient, which can be calculated by dif-

ferent models.27 The main feature of the lift force is that the model is

capable of predicting the so-called cross-over point, at which bubble

distortion causes a reversal in the sign of the lift force. The coefficient

CL, β becomes negative for large bubbles (e.g., for air bubbles in pure

water larger than 5.6 mm), largely affecting the dynamics of bubble

radial and axial redistribution in horizontal pipes. It should be noted

that the critical value at which the sign of CL, β changes may differ

slightly. It depends mainly on the shape and dimension of the bubble.

Besagni and Inzoli 45 found that the bubble aspect ratio depends on

the bubble size in bubbly flows. Spherical bubbles are relatively rare

compared with ellipsoidal bubbles. Different models have been pro-

posed to model the bubble aspect ratio.45,46 Recently new measure-

ments on the lift force for air-water flows were done, and the effect

of the bubble shape was discussed.47 The validity of the change of

the sign of the lift force in dependence on the bubble size was also

shown for ploy-disperse flows turbulent flows.28,47 There might be

some limits for highly turbulent flows. However, the proper correla-

tion for the evaluation of the lift force is still controversial. Some

authors claim that the intensity of turbulent fluctuations also plays an

important role, but most researchers agree that bubbles of different

sizes are subjected to a lift force acting in opposite directions.

Another aspect of the lift model is that the results obtained

using Equation 13 show a gas bubble radial distribution that peaks

at the wall, due to the high continuous phase velocity gradient. The

predicted accumulation is abnormal and not reflected by experi-

mental findings. In order to handle this problem, a lift force

damping model is usually employed. In the lift damping model, the

lift coefficient is multiplied by a limiter, λβ, which can be calculated

using the following expression:

λβ =
1
2

1− cos πmin
yw

1:5dβ
,1

� �� �� �
, ð14Þ

where yw is the distance from the center of the cell (here, the model is

formulated for a finite-volume discretization) to the nearest wall.

Once the distance is smaller than 1.5 times the bubble diameter, the

limiter gradually decreases to zero.

Another way to handle this problem is to include the wall lubrica-

tion force, which tends to push the secondary phase away from the

walls. In bubbly upward flows in a vertical pipe, this force results in

the disperse phase concentrating in a region near, but not immediately

adjacent, to the wall. It is calculated as follows:

Aβ,wall =Cwρcαβ Uc−Vβ

�� ��2n, ð15Þ

where n is the unit normal pointing away from the wall and Cw is the

wall lubrication coefficient, which can be calculated using different

models. Readers should refer to the work of Hosokawa et al5 and

Antal et al6 for more information.

The bubble pressure force acts as a driving force for bubbles to

move from areas with higher phase fractions to areas of lower phase

fraction. It arises due to the pressure variations in the continuous

phase that are not resolved at the mesoscale. The bubble pressure

force is defined by 48

Aβ,bubblePres =r Cbpρcαβ Vβ −Uc
� �

Vβ −Uc
� �� �

, ð16Þ

where Cbp is the bubble pressure coefficient. The effect of the bubble

pressure force in the QBMM is similar to that of the turbulent disper-

sion force in the macroscale model. These forces can ensure that the

equation system is conditionally hyperbolic, which facilitates stabiliza-

tion of the bubbly flow regime.4

Substituting all the forces in Equation 10, the velocity for the dis-

perse phase of size dβ can be calculated. Because the drag force is

important, the drag force term is treated implicitly, while other forces

are treated explicitly. When the Euler-implicit time scheme is

employed to solve the Equation 10, the velocities for the next time

can be written as
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Vt+Δt
β =

Vt
β +Δt SpUc + Suð Þ

1:0+ SpΔt
, ð17Þ

Su =
wdβ

αdβ
Adβ ,buo +Adβ , lift +Adβ ,wall +Adβ ,bubblePres
� �

,Sp =
3
4
αβCD,βρc
ρβdβ

:

ð18Þ

Once the Vt+Δt
β have been updated, the mixed moments can be

updated in terms of their definition as reported in Equation 8. Readers

interested in details of the second step of the operator splitting proce-

dure are invited to read our previous work.40 At last, we finalize the

discussion of the numerics of the E-QBMM and the E–E method by

Table 2, in which the difference between the E-QBMM and the E–E

method is summarized.

2.3 | Coupling and numerical discretization

From the initial settings, the disperse phase fraction can be calculated

(e.g., αd = π
6m0,0,0,3). Neglecting the shared pressure gradient force, lift

force, wall lubrication force, bubble pressure force and the contribu-

tion of the disperse phase in the drag force, the semidiscretised form

of the continuous phase momentum equation is

aP U*
c,P−U

0
c,P

� �
+
X
N

aNUN = −SpUc,P , ð19Þ

where aP and aN are the matrix diagonal and nondiagonal coefficients,

which are a function of Uc; Uc, P, and Uc, N are the unknown velocity

of the continuous phase defined at and near the cell center. The solution

of Equation 18 is the predicted continuous phase velocity, U*
c,P ,

defined by

U*
c,P =

1
aP

−SpUc,P−
X
N

aNUN + aPU
0
c,P

 !
: ð20Þ

The nondrag forces together with the contribution of the disperse

phase in the drag force are defined as the momentum flux, ϕc, force, f:

ϕc,force,f =

SpVβ

ρc
−
PN
dβ =1

αβwβAβ, lift +Aβ,wall +Aβ,bubblePres

 !
f

aP, f
�Sf , ð21Þ

where Ndβ is the number of abscissas, Sf is the surface-normal vector,

and f denotes the variables defined at cell faces. Substituting these

into Equation 1 leads to the semi-discretised form:

∂ αcρcð Þ
∂t

+
X
N

αc, f U*
c,f �Sf +ϕc,force,f

� �� �
=
X

rα2c, f
aP, f

pP, f

 !
�Sf : ð22Þ

Once the pressure is computed from Equation 21, the corrected

continuous phase velocity can be computed by the flux reconstruction

in the PISO procedure.

2.4 | Turbulence model

The Reynolds stress arises in the momentum equations as a result of

the averaging process. Different turbulence models can be employed

to calculate the Reynolds stress, such as the k - ε model,1 k - ω

model,49 or the k - ω SST model.50 It was shown that the k - ω turbu-

lence model yielded a better qualitative prediction of the bubble

plume than the k - ε model, due to the low Reynolds number treat-

ment of the former model.49 Some other works show that the k - ε

model can still yield good results in bubbly flows.51,52 In this study, a

two-phase k - ε model was employed. The equations are omitted for

brevity and readers are refereed to other works for more details.53 It

should be noted that in general the bubble-induced turbulence (BIT)

plays an important role. The presence of bubbles modifies the struc-

ture of the liquid turbulence field and the production of shear-induced

turbulence, which in turns modifies the bubble distribution and the

break-up and coalescence processes. These bubbles act as a source of

the BIT, also generating turbulence in flows that would otherwise be

laminar. In general, the BIT model includes a source term in the turbu-

lence transport equations to account for the turbulence generated by

the bubbles, and different models have been developed.54-57 How-

ever, because BIT may not play a major role in the flows considered

here, it neglected in this work.

3 | TEST CASES AND RESULTS

3.1 | Numerical configurations

The E-QBMM algorithm with the nondrag forces was implemented

in the open-source CFD code OpenFOAM-5.x, which is based on

the cell-centered finite-volume method. The solver is called

twoWayGPBEFoam.40 It employs a pressure-based solution algorithm

designed for a colocated grid arrangement. The contribution of the

large body forces (e.g., the buoyant force, the lift force) are treated as

TABLE 2 Summary of the two numerical approaches

E-QBMM Two-phase E–E

Continuous phase Navier–stokes equation Navier–stokes equation

Disperse phase Moment transport equations with VPA. Navier–stokes equation.

Advantages: Bubbles of different sizes are

transported at different velocities.

Advantages: Demands low

computational resources.

Disadvantages: Computationally demanding

realizable finite-volume scheme should be employed.

Disadvantages: Bubbles of different

sizes are transported at identical velocity.
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momentum flux instead of source terms.58 The higher order flux-

splitting realizable scheme is implemented for the moment transport

equations 44 with a MIN-MOD limiter.59 The flux-corrected transport

(FCT) scheme with a multidimensional universal limiter with explicit

solution (MULES) is employed for the phase fraction equation to

ensure the boundedness of the phase fraction.60 The coupling of the

shared pressure and the continuous phase velocity is solved by the

PISO procedure.61 The adiabatic solver reacting TwoPhaseEulerFoam

without mass-transfer was also employed as a baseline solver in which

the E–E method is implemented.

All the grids in the following test cases are generated by

blockMesh. The mesh size is selected according to a grid indepen-

dence study considering several factors, that is, achieving grid inde-

pendent results, the capability of capturing profile near the wall. In the

square channel test case studied by Žun,41 a 2-D fully orthogonal non-

uniform hexahedral grid with 25 (width) × 150 (height) × 1 (depth)

cells was generated. In the cylinder pipe test case examined by Lucas

et al 42 and Banowski et al,29 2.5-D fully orthogonal grids with

25 (width) × 410 (height) and 25 (width) × 200 (height) were gener-

ated, respectively. The mesh size is selected according to a grid inde-

pendence study considering several factors, that is, achieving grid-

independent results, the capability of capturing profile near the wall. It

was shown in our preliminary investigations that such meshes achieve

mesh-independent solutions. Mesh with higher resolution did not

improve the predictions. The initial moments at the inlet are calcu-

lated by assuming a log-normal distribution.62 The discretization

scheme, sparse matrix solver, momentum closure models, and other

details of these different test cases are listed in Tables 3–5. Since we

employ the PISO algorithm, the pressure is solved iteratively at each

time step. The relevant tolerance and the final tolerance equal 0.01

and 1 × 10-7, respectively. Other variables (e.g., k and ε) are solved

after the pressure and velocity iteration procedure, and the tolerance

equals 1 × 10-7. Since the moment transported equations are solved

using the explicitly realizable scheme, a diagonal solver can be con-

structed and a relatively low tolerance (1 × 10-15) is used. In order to

minimize the time discretization error and to ensure the moments

realizability, the time step is adjusted to ensure that the Courant num-

ber is smaller than 0.05. Unless otherwise stated, all the other simula-

tions in the following sections are performed with identical settings.

It should be noted that the bubble diameter, phase fraction, and

the velocity at the inlet work critically. Generally, the inlet disperse

phase fraction and the bubble velocity are unknown except for the

test case studied by Banowski et al.29 The inlet velocity can be calcu-

lated from the superficial velocity using the following expression:

Vinlet =
Vsuper�OutletArea
inletArea �αinlet : ð23Þ

A typical approach is to assume that the inlet bubble velocity

equals the bubble terminal velocity, namely Vsuper = VTerminalV; then,

the inlet disperse phase fraction can be calculated. As is known, the

single isolated gas bubble's terminal velocity in a liquid depends on

buoyancy and drag force. Therefore, the bubble terminal velocity can

be calculated from the balance between these forces, which requires

the introduction of a drag model. On the other hand, a much simpler

way is to use the existing model to calculate the bubble terminal

velocity. For example, Davies and Taylor used the following expres-

sion to calculate the bubble terminal velocity:

jVTerminalV j =0:707
ffiffiffiffiffiffiffiffiffiffiffi
j g j d

p
: ð24Þ

In this work, we employ another approach for all the test cases

due to its simplicity. In this method, the inlet phase fraction is fixed at

0.5, and then the inlet bubble velocity satisfying the superficial veloc-

ity condition is calculated. It was found in our preliminary investiga-

tion that there is no difference between these methods.

3.2 | Test case studied by Žun

In this section, the experimental data of bubbly flows in a square

channel investigated by Žun 41 was employed as a benchmark. The

gas volume fraction profile was measured with microresistivity probes

with a tip diameter of 0.011 mm, in a square-section channel,

0.0254 m inside for a liquid superficial velocity of 0.43 m/s. Before

the simulation results were compared with the experimental data, sim-

ulation results predicted by the E-QBMM with a first-order scheme

and higher order scheme were compared with those predicted by the

TABLE 3 Numerical configurations used in the test cases

Term Configuration

∂/∂t Euler implicit

rψ cellMDLimited leastSquares 1

rp Gauss linear

r � (ψUU) Gauss limitedLinearV 1;

r � (Uψ ) Gauss limitedLinear 1

r� τ Gauss linear

r2ψ Gauss linear uncorrected

r⊥ψ Uncorrected

ψ f Linear

wdβ,f MIN-MOD limiter

ddβ,f Upwind

Note: ψ denotes a generic variable; (…)f is the face interpolation operator;

r⊥ is the surface-normal gradient. The number “1” indicates the
compliance of the scheme with the definition of TVD scheme. A value of

1 indicates full TVD compliance.

TABLE 4 Solvers and related settings used in the test cases

Solver Preconditioner Rel. tol. Final tol.

p PCG DIC 0.01 1e-7

k PBiCGStab DILU - 1e-7

ε PBiCGStab DILU - 1e-7

mj,k,l,i Diagonal - - 1e-15
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E–E method in order to verify the E-QBMM algorithm and the wall

forces implementations. The superficial gas velocity was set at

0.5 m/s. In the E–E method, the bubble size (constant in time and uni-

form in the computational domain) was set at 4 mm. In the E-QBMM,

the value of the abscissas (bubble size) was also assumed to be identi-

cal (4 mm ± 1% in the case of singular problem in the moments inver-

sion algorithm) with different weight values, meaning that it can be

seen as a monodisperse system.

Figures 2 and 3 show the plots of the phase fraction, liquid veloc-

ity, turbulent kinetic energy, turbulent energy dissipation rate, lift

force, and the wall lubrication force predicted by the E–E method and

the E-QBMM by the higher order scheme and first-order scheme at

L = 1.9 m, respectively. In these simulations, the drag force, lift force,

and wall lubrication force are identical. Therefore, the results should

be same. It can be seen that all the flow variables predicted by the

E–E method and the higher order E-QBMM agree well with each

other, which implies that the drag force, lift force, and wall lubrication

force in the E-QBMM were implemented correctly. The phase fraction

of the disperse phase and relevant variables (e.g., the lift force and

wall force) predicted by the first-order two-way coupled E-QBMM

are very diffusive due to the first-order spatial discretization scheme.

Similar results can be also found in our previous work in which the

one-way coupled E-QBMM was employed to simulate particle-size

segregation.40 The diffusive feature of the first-order spatial scheme

can smash the wall peak phase fraction profile into vertical upward

bubbly flows. The continuous phase variables (e.g., the liquid velocity

TABLE 5 Momentum closure models and the test case details investigated in this work

Test case of Žun 41 Test case of Lucas et al 42 Test case of Banowski et al 29

Drag model Schiller and Naumann 63 Grace et al 64 Grace et al 64

Lift model Tomiyama et al 27 Tomiyama et al 27 Tomiyama et al 27

Wall model Hosokawa et al 5 Hosokawa et al 5 Hosokawa et al 5

Turbulent dispersion model Biesheuvel et al 48 Biesheuvel et al 48 Biesheuvel et al 48

Geometry Square channel Cylindrical pipe Cylindrical pipe

Measurements available α distribution α distribution liquid velocity α distribution

Features Wall peak (mono-disperse)

Double peak (poly-disperse)

Wall peak (mono-disperse) Double peak (poly-disperse)

Sparger openings Two separated single nozzles (exp) Six separated single nozzles (exp) Cylindrical ring with 16 holes (exp)
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F IGURE 2 From top left to
bottom right: Comparison of the
turbulent kinetic energy, the turbulent
energy dissipation rate, the liquid
velocity, the phase fraction, the lift
force, and the wall force by the E–E
method (red line) and higher order E-
QBMM (black line). Superficial
velocity: 0.5 m/s. Liquid velocity:
0.43 m/s [Color figure can be viewed
at wileyonlinelibrary.com]

LI ET AL. 7 of 14

http://wileyonlinelibrary.com


and the turbulent kinetic energy) predicted by the first-order and

higher order two-way coupled E-QBMM show no substantial differ-

ence, which implies that the spatial scheme of the disperse phase has

little effect on the continuous phase. Therefore, in the following sec-

tions, all the test cases predicted by the E-QBMM were launched by

the higher order spatial schemes.

Since the bubble size was assumed to be 4 mm, the wall peak was

successfully predicted by the E-QBMM and the E–E method due to

the lateral lift force and wall lubrication force, as shown in Figures 2

and 3. Moreover, the phase fraction in the vicinity of the wall

decreases sharply because the lateral wall lubrication force pushes the

bubbles away from it. As the bubble pressure force and the turbulent

dispersion force are not included in the E-QBMM and the E–E

method, the wall peaks predicted by both methods are rather strong,

but still consistent with one other. The predictions of the turbulent

kinetic energy and the turbulent energy dissipation rate also show the

typical wall peak trend in bubbly flows, which is consistent with other

works.28,65 To further validate the algorithm, three points were

selected to monitor the local liquid velocities predicted by the E-

QBMM and the E–E method. It can be seen in Table 6 that the local

liquid velocities predicted by these two different methods agree well

with each other, which further implies that the implementation is

correct.

To validate the turbulent dispersion force and the bubble pressure

gradient force, the simulation results predicted by the E-QBMM and

the E–E method were compared against measured data. The constant

and uniform bubble size (abscissas value) was assumed to be 4.1 mm.

As the author did not report the superficial gas velocity, it was

assumed to be 0.5 m/s after a fitting procedure. A similar procedure

can also be found in other works.65 The turbulent dispersion force

model proposed by reference 66, and the coefficient of the bubble

pressure gradient force were assumed to be 2.0.39 The predictions of

the phase fraction by the E–E method and the E-QBMM at L/D = 45

are illustrated in Figure 4. It can be seen that both methods capture

the wall peak, and the results predicted by both methods agree well

with the experimental data. The sharp phase fraction profile reported

in Figure 2 is flattened due to the existence of the turbulent disper-

sion force in the E–E method and the bubble pressure force in the E-

QBMM. However, the predictions of the phase fraction by the E-

QBMM and E–E method are underestimated near the wall. This is due

to the overprediction of the wall lubrication model and can be

improved by adjusting the wall lubrication force parameter. The pre-

dictions of the magnitude of the lift force and wall force by the E-

QBMM and the E–E method are reported in Figure 5. These forces
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F IGURE 3 From top left to
bottom right: Comparison of the
turbulent kinetic energy, the turbulent
energy dissipation rate, the liquid
velocity, the phase fraction, the lift
force, and the wall force by the E–E
method (red line) and first-order E-
QBMM (black line). Superficial
velocity: 0.5 m/s. Liquid velocity:
0.43 m/s [Color figure can be viewed
at wileyonlinelibrary.com]

TABLE 6 Prediction of the local liquid velocities by the E–E
method and E-QBMM at different points

Radical location Local liquid velocities Local liquid velocities

(y = 1 m,z = 0 m) Predicted by the

E-QBMM

Predicted by the

E–E method

Point 1 (x = 0 m) 0.449 m/s 0.463 m/s

Point 2 (x = 0.005 m) 0.448 m/s 0.449 m/s

Point 3 (x = 0.012 m) 0.347 m/s 0.346 m/s
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reach a maximum value near the wall due to the large velocity gradi-

ent of the continuous phase and decrease to zero when the damping

model is applied, as reported in Equation 14.

Next, the bubble size was assumed to be 6.4 mm, a value which is

consistent with the experimental data in the work by Žun.41 Other

operating conditions are identical with previous ones. In experiments,

these large bubbles should move to the pipe center in upward bubbly

flows due to the negative lift force. Figure 6 shows the phase fraction

predicted by the E-QBMM and the E–E method. In experiments, the

bubbles tend to move toward the pipe center, and the nonuniform

phase fraction distribution has the largest value at the pipe center. It

can be seen that the phase fraction predicted by the E-QBMM, and

the E–E method agree well with the experimental data due to the lift

force predicted by the model developed by Tomiyama et al 27 with a

negative coefficient.

Finally, the E-QBMM and E–E were employed to predict the evolu-

tion of polydisperse bubbly flows. In the E-QBMM simulation, the values

of the abscissas were assumed to be 4 mm, 5.4 mm, and 6.5 mm, and

weights' value were assumed to be 59,333, 48,559 and 32,423. In the

E–E simulation, the bubble diameter equal to 5.44 mm, which is identical

with the mean Sauter diameter in the E-QBMM. Other settings are iden-

tical with previous cases. These bubbles can be seen as three disperse

phases with the same physical attributes (e.g., density) but different sizes.

Since the sizes of the bubbles are different, the phase fraction profile

should represent a phase segregation because the large bubbles move

toward the center and small ones move toward the wall. In experiments,

a double peak is captured and the simulation should be able to predict

it. Since the abscissas' and weights' values are fixed, the moments are

calculated by m0,0,0, i =
PN

β =1wβd
i
β . These moments are used as the ini-

tial inlet boundary condition values.

It can be seen in Figure 7 that the double peak phase fraction

profile predicted by the E-QBMM agrees well with the experimen-

tal data. Moreover, Figure 8 shows the small bubbles and large

bubbles predicted by the E-QBMM move in opposite directions

since they are transported at their own velocities as seen in Equa-

tion 4. Meanwhile, it can be seen that a double peak of this type

can never be predicted by the two-phase E–E method since only

one bubble size can be fed into the mathematical models. It is pos-

sible to employ a three-phase E–E–E model (multi-fluid model) to

predict a double peak, in which multiple momentum equations are

employed for different phases of different sizes. The multifluid

model resembles the three-phase E-QBMM-QBMM, in which two

GPBEs are employed for the disperse phase. However, we would

like to stress that the advantage of the E-QBMM over the E–E

method is that even only one GPBE is employed for the polydis-

perse phase, the phase segregation can be successfully predicted

by the E-QBMM.
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F IGURE 4 Comparison of the
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(right, black line) with experimental
data (dots). Superficial velocity:
0.5 m/s. Liquid velocity: 0.43 m/s
[Color figure can be viewed at
wileyonlinelibrary.com]

 0

 10

 20

 30

 40

 0  0.004  0.008  0.012

Li
ft 

fo
rc

e 
(N

/m
3 )

Radial position (m)

-40

-30

-20

-10

 0

 0  0.004  0.008  0.012

W
al

l f
or

ce
 (

N
/m

3 )

Radial position (m)

F IGURE 5 Comparison of the lift
force (left) and wall force (right)
predicted by the E–E method (red
line) and the E-QBMM (black line).
Homogeneous bubble size: 4 mm.
Superficial velocity: 0.5 m/s. Liquid
velocity: 0.43 m/s [Color figure can
be viewed at wileyonlinelibrary.com]

 0

 0.02

 0.04

 0.06

 0  0.004  0.008  0.012

G
as

 v
ol

um
e 

fr
ac

tio
n 

(-
)

Radial position (m)

 0

 0.02

 0.04

 0.06

 0  0.004  0.008  0.012
G

as
 v

ol
um

e 
fr

ac
tio

n 
(-

)

Radial position (m)

F IGURE 6 Comparison of the
phase fraction predicted by the E–E
method (left, black line) and E-QBMM
(right, black line) with experimental data
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3.3 | Test case studied by Lucas et al

The experimental data by Lucas et al 42 provide an opportunity to

test the model against gas velocity data. The evolution of the bub-

bly flow was studied in a vertical tube with an inner diameter of

51.2 mm that was supplied with an air-water mixture. The vertical

test section has a maximum length of about 4 m. In simulations, a

wedge mesh was generated as discussed in Section 3.1. It is a typi-

cal mesh configuration and can save considerable computational

resources.67 The inlet turbulence intensity is assumed to be 5%,

and the integral turbulent length scale is set to 10% of the pipe

diameter. Varying this value had no discernible effect on the simu-

lation results. The wall lubrication model developed by Hosokawa

et al 5 was employed for this test case.

Figure 9 shows the phase fraction and the gas phase velocity

predicted by the E-QBMM and the E–E method. It can be seen that

the phase fraction predicted by the E-QBMM and the E–E method

agree well with the experimental data. However, the right tail of the

phase fraction plot predicted by both methods in the vicinity of the

wall is lower than the experimental value. The reason for this slight

underestimation is the overprediction of the wall lubrication forces

near the wall. The gas velocities predicted by the E-QBMM and E–E

agree well with measured data. Moreover, the velocities of the bub-

bles of identical sizes (≈4.8 mm) predicted by the E-QBMM overlap

and agree well with experimental data, which implies that the algo-

rithm and implementation are correct. Last but not least, it can be

seen that the E-QBMM can also be employed to predict mono-

disperse multiphase systems.
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F IGURE 7 Comparison of the
averaged phase fraction predicted by
the E-QBMM (left, black line) and E–E
method (right, red line) with
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F IGURE 8 Comparison of the averaged phase fraction predicted by the E-QBMM for large (left), medium (middle), and small bubbles (right).
Superficial velocity: 0.5 m/s. Liquid velocity: 0.43 m/s
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Now it is interesting to employ the E-QBMM to simulate a poly-

disperse system by adjusting the bubble sizes. Figure 10 represents

the phase fraction predicted by the E-QBMM for bubble sizes of

4.1/4.9/5.8 mm and 4.3/4.9/5.6 mm. It can be seen that bubbles of

size smaller than 5.5 mm tend to move toward the wall, but the maxi-

mum value of the phase fraction is located at different positions. The

smaller the bubbles are, the closer they accumulate to the wall. On

the other hand, the large bubbles (i.e., larger than 5.5 mm) tend to

move toward the pipe center, which is consistent with the physics.

Moreover, the overall phase fraction profile predicted by E-QBMM

still represents a wall peak even in this polydisperse system since the

mean Sauter diameter is smaller than 5.5 mm.

3.4 | Test case by Banowski et al

Finally, we complete the study with a relatively recent work by

Banowski et al.29 In that work, air/water two-phase co-current

upward flows in a vertical pipe are investigated using X-ray tomogra-

phy. The test section comprises a vertical titanium pipe with an inner

diameter of 54.8 mm and a length of 6 m. Gas is injected into the
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F IGURE 10 Comparison of the phase fraction predicted by the E-QBMM with experimental data (dots). Poly-disperse bubble sizes:
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F IGURE 11 Comparison of the
phase fraction predicted by the E–E
method (left, black line) and the E-
QBMM (right, black line) with
experimental data (dots). Superficial
velocity: 0.0151 m/s. Liquid velocity:
1.017 m/s [Color figure can be
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F IGURE 12 The contour plots of
the developed phase fraction
predicted by the E-QBMM at

z = 0.01 m (top left), z = 0.1 m (top
right), z = 1 m (bottom left), and
z = 1.6 m (bottom right). Superficial
velocity: 0.0151 m/s. Liquid velocity:
1.017 m/s [Color figure can be
viewed at wileyonlinelibrary.com]
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water stream at the bottom of the pipe 0.5 m downstream from the

bend via an injection module with sparger rings. The superficial veloci-

ties of the air and water are 0.0151 and 1.017 m/s, respectively. The

radial gas phase fraction is monitored at L/D = 59 for different bubble

size classes.

The numerical configurations in the E-QBMM simulations are

identical with previous test cases. The phase fraction predicted by the

E-QBMM and the E–E method are reported in Figure 11. Again, it can

be seen that the double peak was predicted by the E-QBMM due to

large bubbles moving toward the pipe center and small bubbles mov-

ing toward the wall. The two-phase E–E method fails to predict the

double peak since it is only applicable for monodisperse phase sys-

tems. A multiphase E–E method combined with the inhomogeneous

MUSIG model should be able to handle the problem, in which multiple

momentum equations are employed for the disperse phase.34 How-

ever, in order to make a justified comparison with the E-QBMM, in

which only one GPBE is employed for the disperse phase, only the

two-phase E–E method is investigated in this work.

The contour plots of the phase fraction predicted by the E-QBMM

and the E–E method at different horizontal sections are shown in

Figure 12. It can be seen that the plots predicted by the E-QBMM

also capture the double peak in vertical upward poly-disperse bubbly

flows in upper sections. It should be noted that in our previous

work,40 we found that the flow field information (e.g., the phase frac-

tion distribution) is highly dependent on the inlet conditions for a

sudden-enlargement gas–liquid test case with a relatively low L/R

value. However, even if a uniform phase fraction is given for the test

case by Banowski et al, the phase fraction profile still develops gradu-

ally to nonuniform distribution along the vertical pipe direction. This

implies that there is enough time for the phase fraction to develop in

similar vertical upward bubbly flows with high L/R values.

4 | CONCLUSIONS

In this work, the higher order fully coupled E-QBMM with a full set of

momentum interfacial exchange terms (e.g., the drag/lift/wall

lubrication/bubble pressure forces) was implemented in open-source

CFD code OpenFOAM-5.x, in which the conditioned disperse velocity

is modeled by the VPA. The solver is called twoWayGPBEFoam, and it

was employed to simulate monodisperse and polydisperse bubbly

flows in vertical upward channels. reactingTwoPhaseEulerFoam

was also employed as a benchmark model comparison, in which the

E–E method is implemented. Different experimental data from differ-

ent works featuring wall peaks and double peaks were selected to ver-

ify the algorithm and the implementations.

We show that the results predicted by the higher order E-QBMM

are identical to those predicted by the E–E method. For bubbly flows,

when the bubbles are small, both methods can predict the wall peak.

For bubbly flows with large diameters, the predictions using both

methods show the bubbles moving toward the channel/pipe center

due to the negative lift force coefficient, which is consistent with

experimental data. When large bubbles and small bubbles exist

alongside one another, constituting a polydisperse system, the double

peak can be successfully predicted by the E-QBMM, since the bubbles

of different sizes are transported at different velocities (see Equa-

tion 4). Moreover, the bubble pressure force and turbulent dispersion

force can smooth the lateral phase fraction distribution, and the over-

prediction of the wall lubrication force incurs an underestimation of

the phase fraction in a small region in the vicinity of the wall. Improve-

ments can be achieved by a more sophisticated combination of the

nondrag forces and the breakage and coalescence model.
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