Skip to content
  • 最新
  • 版块
  • 东岳流体
  • 随机看[请狂点我]
皮肤
  • Light
  • Cerulean
  • Cosmo
  • Flatly
  • Journal
  • Litera
  • Lumen
  • Lux
  • Materia
  • Minty
  • Morph
  • Pulse
  • Sandstone
  • Simplex
  • Sketchy
  • Spacelab
  • United
  • Yeti
  • Zephyr
  • Dark
  • Cyborg
  • Darkly
  • Quartz
  • Slate
  • Solar
  • Superhero
  • Vapor

  • 默认(不使用皮肤)
  • 不使用皮肤
折叠
CFD中文网

CFD中文网

  1. CFD中文网
  2. OpenFOAM
  3. 拉格朗日求解器代码求助

拉格朗日求解器代码求助

已定时 已固定 已锁定 已移动 OpenFOAM
14 帖子 4 发布者 5.6k 浏览
  • 从旧到新
  • 从新到旧
  • 最多赞同
回复
  • 在新帖中回复
登录后回复
此主题已被删除。只有拥有主题管理权限的用户可以查看。
  • 李东岳李 离线
    李东岳李 离线
    李东岳 管理员
    写于 最后由 编辑
    #2

    把你这两个方程里面自定义参数的值都写一下我看看。

    http://dyfluid.com/index.html
    需要帮助debug算例的看这个 https://cfd-china.com/topic/8018

    Y 1 条回复 最后回复
  • Y 离线
    Y 离线
    youhaoyu
    在 中回复了 李东岳 最后由 编辑
    #3

    @李东岳 我忽略了第一个方程最后那个u和ub
    R — 气泡半径
    ··R — 气泡半径对时间二阶导
    ·R — 气泡半径对时间一阶导
    pv — 气泡内饱和蒸汽压(我这里设置的0,因为这个方程考虑了空化现象,我直接取的0)
    pg — 气泡内部气压(根据第二个方程在计算)
    p∞ — 气泡受到的液体压强(我这里使用PInterp插值,在DPMFoam求解器也自定义了个P=p*rhoc)
    σ — 表面张力
    pgo — 初始气泡内部压强
    Ro — 初始气泡直径

    值得一提的是,修改完求解器之后,这个pgo和Ro我看我现在阅读的论文代码上是直接在KinematicCloudProperties的颗粒参数上进行了赋值。
    在我上面那个KinematicParcel.C是主要算法,使用龙格库朗四阶对于这个二阶的方程进行的求解(他直接把方程2-49代入了2-48计算)。

    1 条回复 最后回复
  • 李东岳李 离线
    李东岳李 离线
    李东岳 管理员
    写于 最后由 李东岳 编辑
    #4

    \begin{equation}
    r\frac{\p^2 r}{\p t^2}+1.5\frac{\p r}{\p t}=
    \frac{1}{\rho}\left(p_{g0} \left(r_0/r\right)^{3\gamma} -p\rho_\rc-\frac{2\sigma}{r} - \frac{4\mu}{r}\frac{\p r}{\p t}\right)+\frac{(\bfU_\rc-\bfU)^2}{4}
    \end{equation}

    我把这个方程简化成这个行不行

    \begin{equation}
    r\frac{\p^2 r}{\p t^2}+1.5\frac{\p r}{\p t}=A+\frac{(\bfU_\rc-\bfU)^2}{4}
    \end{equation}

    $A=0$

    http://dyfluid.com/index.html
    需要帮助debug算例的看这个 https://cfd-china.com/topic/8018

    Y 2 条回复 最后回复
  • Y 离线
    Y 离线
    youhaoyu
    在 中回复了 李东岳 最后由 编辑
    #5

    @李东岳 这个把右侧括号部分考虑成0的话可能不大妥吧,因为我是个动态过程,气泡的入口和出口的压力差相差了两个数量级,还是挺大的。要看这个气泡慢慢变大过程。
    如果你把A考虑成0,方程无法体现气泡内外压力差和表面张力,和我的模型可能也有一些问题。
    方程的解法其实也不是很大问题,主要是这些变量如何去申明定义太恶心了。东岳老师您这种就简化的模型不大适合我目前的课题。 最开始我也想过,直接使用最简单的理想方程PV=NRT这种去修改,但是我觉得这种方程使用起来不是特别好

    1 条回复 最后回复
  • 李东岳李 离线
    李东岳李 离线
    李东岳 管理员
    写于 最后由 编辑
    #6

    我只是提供一个框架,而不是实际把r计算出来。后续你要在框架上自己进行修改,比如把A改成真实的。

    http://dyfluid.com/index.html
    需要帮助debug算例的看这个 https://cfd-china.com/topic/8018

    1 条回复 最后回复
  • Y 离线
    Y 离线
    youhaoyu
    在 中回复了 李东岳 最后由 编辑
    #7

    @李东岳 我的模型大概是1米高的管道,下方10000大气压,上方600Pa(液体是钢液,密度7000),底部通入气泡这种模型,对于气泡和液体之间压强差这个就是我们主要考虑的因素。这种来说A感觉不能直接考虑为0,所以我一直在看如何直接植入这个完整的方程

    1 条回复 最后回复
  • 杨英狄杨 离线
    杨英狄杨 离线
    杨英狄
    写于 最后由 编辑
    #8

    粒子性质的定义不仅在KinematicParcel.C和KinematicParcel.H,在其他文件中也涉及相关代码。你可以正则搜索一下,看看那些文件涉及粒子性质的声明和定义。

    Y 1 条回复 最后回复
  • Y 离线
    Y 离线
    youhaoyu
    在 中回复了 杨英狄 最后由 编辑
    #9

    @杨英狄 谢谢,这几天我我看了看,是我有些地方没有定义完成,我看您之前也在往DPMFoam添加RP方程,添加成功了吗?我最近添加编译成功了,库和求解器都成功了,但是计算出来结果颗粒直径没有变化。(您好久没登陆了,我还在尝试联系您,没成功)

    杨英狄杨 1 条回复 最后回复
  • 杨英狄杨 离线
    杨英狄杨 离线
    杨英狄
    在 中回复了 youhaoyu 最后由 编辑
    #10

    @youhaoyu 如果计算过程中发现粒径没有变化,可能是添加的RP方程计算程序没有被调用。参考原生的lagrange库,粒子速度的更新函数calcVelocity(),是在函数calc()里面被调用的。你可以看看你的RP方程函数是否在calc()里面调用了。

    Y 1 条回复 最后回复
  • Y 离线
    Y 离线
    youhaoyu
    在 中回复了 杨英狄 最后由 编辑
    #11

    @杨英狄 是的,我就是这么编写的,我写了个calcDiameter,但是就是没发现哪儿有问题,现在我在一点点改看看哪儿有问题。
    但是现在麻烦来了,修改了代码之后,编译能成功,但是使用求解器时候会报错,什么浮点数异常什么的,我初始条件都没改,哎麻烦死了。能不能给个联系方式,想咨询下您问题,因为刚好看到您也修改过

    mingyangM 1 条回复 最后回复
  • mingyangM 离线
    mingyangM 离线
    mingyang
    在 中回复了 youhaoyu 最后由 编辑
    #12

    @youhaoyu 你好,能学习一下您的植入方法吗,我最近也被困在这了,期待你的回复,感谢

    Y 1 条回复 最后回复
  • Y 离线
    Y 离线
    youhaoyu
    在 中回复了 mingyang 最后由 编辑
    #13

    @mingyang 您好可以加我qq 2269609762一起探讨,我也没做成功

    1 条回复 最后回复
  • 李东岳李 离线
    李东岳李 离线
    李东岳 管理员
    写于 最后由 李东岳 编辑
    #14

    我在几年前做了个一拉格朗日粒子直径变化的代码。我现在已经记不起来太多了。能想起来的是:

    1. 粒子直径跟流场的湍流动能耗散率有关系
    2. 植入的是一个跟PBM有关的粒径变化方程,考虑了coalescense和破碎
    3. 代码可以编译并且测试过可以体现粒径变化

    可以把下面的MomentumCloud.C:替换到OpenFOAM原来的代码然后编译。搞明白之后看看思路然后适配到你们的算法上。

    MomentumCloud.C:

    /*---------------------------------------------------------------------------*\
      =========                 |
      \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox
       \\    /   O peration     | Website:  https://openfoam.org
        \\  /    A nd           | Copyright (C) 2011-2021 OpenFOAM Foundation
         \\/     M anipulation  |
    -------------------------------------------------------------------------------
    License
        This file is part of OpenFOAM.
    
        OpenFOAM is free software: you can redistribute it and/or modify it
        under the terms of the GNU General Public License as published by
        the Free Software Foundation, either version 3 of the License, or
        (at your option) any later version.
    
        OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
        ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
        FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
        for more details.
    
        You should have received a copy of the GNU General Public License
        along with OpenFOAM.  If not, see <http://www.gnu.org/licenses/>.
    
    \*---------------------------------------------------------------------------*/
    
    #include "MomentumCloud.H"
    #include "integrationScheme.H"
    #include "interpolation.H"
    #include "subCycleTime.H"
    
    #include "InjectionModelList.H"
    #include "DispersionModel.H"
    #include "PatchInteractionModel.H"
    #include "StochasticCollisionModel.H"
    #include "SurfaceFilmModel.H"
    
    // * * * * * * * * * * * * * Protected Member Functions  * * * * * * * * * * //
    
    template<class CloudType>
    void Foam::MomentumCloud<CloudType>::setModels()
    {
        dispersionModel_.reset
        (
            DispersionModel<MomentumCloud<CloudType>>::New
            (
                subModelProperties_,
                *this
            ).ptr()
        );
    
        patchInteractionModel_.reset
        (
            PatchInteractionModel<MomentumCloud<CloudType>>::New
            (
                subModelProperties_,
                *this
            ).ptr()
        );
    
        stochasticCollisionModel_.reset
        (
            StochasticCollisionModel<MomentumCloud<CloudType>>::New
            (
                subModelProperties_,
                *this
            ).ptr()
        );
    
        surfaceFilmModel_.reset
        (
            SurfaceFilmModel<MomentumCloud<CloudType>>::New
            (
                subModelProperties_,
                *this
            ).ptr()
        );
    
        UIntegrator_.reset
        (
            integrationScheme::New
            (
                "U",
                solution_.integrationSchemes()
            ).ptr()
        );
    }
    
    
    template<class CloudType>
    template<class TrackCloudType>
    void Foam::MomentumCloud<CloudType>::solve
    (
        TrackCloudType& cloud,
        typename parcelType::trackingData& td
    )
    {
        if (solution_.steadyState())
        {
            cloud.storeState();
    
            cloud.preEvolve();
    
            evolveCloud(cloud, td);
    
            if (solution_.coupled())
            {
                cloud.relaxSources(cloud.cloudCopy());
            }
        }
        else
        {
            /////////////////////////////////
            Info<< "Dyfluid: Evolve function in MomentumCloud.C" << nl;
           
            List<DynamicList<label>> PartLabelPre(U_.size());
            List<DynamicList<label>> PartLabelPost(U_.size());
    
            DynamicList<label> cellWithPartPre;
            DynamicList<label> cellWithPartPost;
    
            pNumber_.primitiveFieldRef() = 0.0;
            forAllIter(typename MomentumCloud<CloudType>, *this, iter)
            {
                parcelType& p = iter();
                pNumber_[p.cell()] += p.nParticle();
                PartLabelPre[p.cell()].append(p.origId());                                           
            }
    
            forAll(U_, cell)
            {
                if (PartLabelPre[cell].size() != 0)
                {
                    cellWithPartPre.append(cell);
                }
            }
    
            //Info<< cellWithPartPre << nl;
            /////////////////////////////////
        	
            cloud.preEvolve();
    
            evolveCloud(cloud, td);
    
            if (solution_.coupled())
            {
                cloud.scaleSources();
            }
    
            /////////////////////////////////
            forAllIter(typename MomentumCloud<CloudType>, *this, iter)
            {
                parcelType& p = iter();
                PartLabelPost[p.cell()].append(p.origId());                                           
            }
    
            const volScalarField& epsi = U_.mesh().lookupObject<volScalarField>("epsilon.water");
            scalar C1 = 0.00481;
            scalar C2 = 0.08;
            scalar sigma = 0.072;
            scalar rhoc = 998.0;
            scalar D1 = 0.88;
            scalar D2 = 9e6;
            scalar muc = 1e-3;
            const scalar dt = this->mesh().time().deltaTValue();
            
            forAll(U_, cell)
            {
                // if there are particles in some cell
                if (PartLabelPost[cell].size() != 0)
                {
                    cellWithPartPost.append(cell);
            
                    scalar allVolume = 0.0;
                    scalar allnParticle = 0.0;
                    scalar allnParticleNew = 0.0;
                    scalar diamAve = 0.0;
                    //Info<< "Cell [" << cell << "] has " << PartLabelPost[cell].size() 
                    //    << " particles" << nl;
    
                    // loop all over particles
                    forAllIter(typename MomentumCloud<CloudType>, *this, iter)
                    {
                        parcelType& p = iter();
    
                        // loop particles label in this cell
                        forAll(PartLabelPost[cell], i)
                        {
                            // if this particle belongs to this cell
                            if (p.origId() == PartLabelPost[cell](i))
                            {
                                allVolume += p.nParticle()*M_PI/6.0*pow3(p.d());
                                allnParticle += p.nParticle();
                                diamAve = pow(allVolume/allnParticle*6.0/M_PI, 1.0/3.0);
                                //Info<< " Labels are " << PartLabelPost[cell](i)
                                //    << ", its nParticle is " << p.nParticle() 
                                //    << ", volume is " << allVolume << nl;
                            }
                        }
                    }
    
                    const scalar d = diamAve;
    
                    // cell manipulation, calculate average diameter
                    if (d > SMALL)
                    {
                        const scalar epsilon = epsi[cell];
                        scalar gN = 
                            allnParticle*C1*pow(epsilon, 1.0/3.0)/pow(d, 2.0/3.0)
                           *exp(-C2*sigma/(rhoc*pow(epsilon, 2.0/3.0)*pow(d, 5.0/3.0)));
    
                        scalar aSqrN = 
                            sqr(allnParticle)*D1*pow(epsilon, 1.0/3.0)*4.0*sqrt(2.0)*pow(d, 7.0/6.0)
                           *exp(-D2*muc*rhoc*epsilon/sqr(sigma)*pow4(d)/16.0);
                    
                        allnParticleNew = allnParticle + (gN - aSqrN)*dt;
                    
                        diamAve = diamAve*pow(allnParticle/allnParticleNew, 1.0/3.0); 
                        //Info<< "gN = " << gN << nl;
                        //Info<< "aSqrN = " << aSqrN << nl;
                        //Info<< "Particle increased by " << allnParticleNew - allnParticle << nl;
                        //Info<< "diamAve is " << diamAve << nl;
                    }
                
                    scalar newVolume = 0.0;
    
                    forAllIter(typename MomentumCloud<CloudType>, *this, iter)
                    {
                        parcelType& p = iter();
    
                        forAll(PartLabelPost[cell], i)
                        {
                            if (p.origId() == PartLabelPost[cell](i))
                            {
                                p.nParticle() = allnParticleNew/PartLabelPost[cell].size();
                                p.d() = diamAve;
                                newVolume += p.nParticle()*M_PI/6.0*pow3(p.d());
                                //Info<< " after brecoa, volume is " << newVolume
                                //    << "p.nParticle is " << p.nParticle() << nl;
                            }
                        }
                    }
                }
            }
            /////////////////////////////////
        }
    
        cloud.info();
    
        cloud.postEvolve();
    
        if (solution_.steadyState())
        {
            cloud.restoreState();
        }
    }
    
    
    template<class CloudType>
    void Foam::MomentumCloud<CloudType>::buildCellOccupancy()
    {
        if (cellOccupancyPtr_.empty())
        {
            cellOccupancyPtr_.reset
            (
                new List<DynamicList<parcelType*>>(this->mesh().nCells())
            );
        }
        else if (cellOccupancyPtr_().size() != this->mesh().nCells())
        {
            // If the size of the mesh has changed, reset the
            // cellOccupancy size
    
            cellOccupancyPtr_().setSize(this->mesh().nCells());
        }
    
        List<DynamicList<parcelType*>>& cellOccupancy = cellOccupancyPtr_();
    
        forAll(cellOccupancy, cO)
        {
            cellOccupancy[cO].clear();
        }
    
        forAllIter(typename MomentumCloud<CloudType>, *this, iter)
        {
            cellOccupancy[iter().cell()].append(&iter());
        }
    }
    
    
    template<class CloudType>
    void Foam::MomentumCloud<CloudType>::updateCellOccupancy()
    {
        // Only build the cellOccupancy if the pointer is set, i.e. it has
        // been requested before.
    
        if (cellOccupancyPtr_.valid())
        {
            buildCellOccupancy();
        }
    }
    
    
    template<class CloudType>
    template<class TrackCloudType>
    void Foam::MomentumCloud<CloudType>::evolveCloud
    (
        TrackCloudType& cloud,
        typename parcelType::trackingData& td
    )
    {
        if (solution_.coupled())
        {
            cloud.resetSourceTerms();
        }
    
        if (solution_.transient())
        {
            label preInjectionSize = this->size();
    
            this->surfaceFilm().inject(cloud);
    
            // Update the cellOccupancy if the size of the cloud has changed
            // during the injection.
            if (preInjectionSize != this->size())
            {
                updateCellOccupancy();
                preInjectionSize = this->size();
            }
    
            injectors_.inject(cloud, td);
    
    
            // Assume that motion will update the cellOccupancy as necessary
            // before it is required.
            cloud.motion(cloud, td);
    
            stochasticCollision().update(td, solution_.trackTime());
        }
        else
        {
    //        this->surfaceFilm().injectSteadyState(cloud);
    
            injectors_.injectSteadyState(cloud, td, solution_.trackTime());
    
            CloudType::move(cloud, td, solution_.trackTime());
        }
    }
    
    
    template<class CloudType>
    void Foam::MomentumCloud<CloudType>::postEvolve()
    {
        Info<< endl;
    
        if (debug)
        {
            this->writePositions();
        }
    
        this->dispersion().cacheFields(false);
    
        forces_.cacheFields(false);
    
        functions_.postEvolve();
    
        solution_.nextIter();
    
        if (this->db().time().writeTime())
        {
            outputProperties_.writeObject
            (
                IOstream::ASCII,
                IOstream::currentVersion,
                this->db().time().writeCompression(),
                true
            );
        }
    }
    
    
    template<class CloudType>
    void Foam::MomentumCloud<CloudType>::cloudReset(MomentumCloud<CloudType>& c)
    {
        CloudType::cloudReset(c);
    
        rndGen_ = c.rndGen_;
    
        forces_.transfer(c.forces_);
    
        functions_.transfer(c.functions_);
    
        injectors_.transfer(c.injectors_);
    
        dispersionModel_.reset(c.dispersionModel_.ptr());
        patchInteractionModel_.reset(c.patchInteractionModel_.ptr());
        stochasticCollisionModel_.reset(c.stochasticCollisionModel_.ptr());
        surfaceFilmModel_.reset(c.surfaceFilmModel_.ptr());
    
        UIntegrator_.reset(c.UIntegrator_.ptr());
    }
    
    
    // * * * * * * * * * * * * * * * * Constructors  * * * * * * * * * * * * * * //
    
    template<class CloudType>
    Foam::MomentumCloud<CloudType>::MomentumCloud
    (
        const word& cloudName,
        const volScalarField& rho,
        const volVectorField& U,
        const volScalarField& mu,
        const dimensionedVector& g,
        const bool readFields
    )
    :
        CloudType(cloudName, rho, U, mu, g, false),
        cloudCopyPtr_(nullptr),
        particleProperties_
        (
            IOobject
            (
                cloudName + "Properties",
                this->mesh().time().constant(),
                this->mesh(),
                IOobject::MUST_READ_IF_MODIFIED,
                IOobject::NO_WRITE
            )
        ),
        outputProperties_
        (
            IOobject
            (
                cloudName + "OutputProperties",
                this->mesh().time().timeName(),
                "uniform"/cloud::prefix/cloudName,
                this->mesh(),
                IOobject::READ_IF_PRESENT,
                IOobject::NO_WRITE
            )
        ),
        solution_(this->mesh(), particleProperties_.subDict("solution")),
        constProps_(particleProperties_),
        subModelProperties_
        (
            particleProperties_.subOrEmptyDict("subModels", true)
        ),
        rndGen_(0),
        cellOccupancyPtr_(),
        cellLengthScale_(mag(cbrt(this->mesh().V()))),
        pNumber_
        (
            IOobject
            (
                "pNumbers",
                this->mesh().time().timeName(),
                this->mesh(),
                IOobject::NO_READ,
                IOobject::AUTO_WRITE
            ),
            this->mesh(),
            dimensionedScalar(dimless, 0.0)
        ),
        rho_(rho),
        U_(U),
        mu_(mu),
        g_(g),
        pAmbient_(0.0),
        forces_
        (
            *this,
            this->mesh(),
            subModelProperties_.subOrEmptyDict
            (
                "particleForces",
                true
            ),
            true
        ),
        functions_
        (
            *this,
            particleProperties_.subOrEmptyDict("cloudFunctions"),
            true
        ),
        injectors_
        (
            subModelProperties_.subOrEmptyDict("injectionModels"),
            *this
        ),
        dispersionModel_(nullptr),
        patchInteractionModel_(nullptr),
        stochasticCollisionModel_(nullptr),
        surfaceFilmModel_(nullptr),
        UIntegrator_(nullptr),
        UTrans_
        (
            new volVectorField::Internal
            (
                IOobject
                (
                    this->name() + ":UTrans",
                    this->db().time().timeName(),
                    this->db(),
                    IOobject::READ_IF_PRESENT,
                    IOobject::AUTO_WRITE
                ),
                this->mesh(),
                dimensionedVector(dimMass*dimVelocity, Zero)
            )
        ),
        UCoeff_
        (
            new volScalarField::Internal
            (
                IOobject
                (
                    this->name() + ":UCoeff",
                    this->db().time().timeName(),
                    this->db(),
                    IOobject::READ_IF_PRESENT,
                    IOobject::AUTO_WRITE
                ),
                this->mesh(),
                dimensionedScalar( dimMass, 0)
            )
        )
    {
        setModels();
    
        if (readFields)
        {
            parcelType::readFields(*this);
            this->deleteLostParticles();
        }
    
        if (solution_.resetSourcesOnStartup())
        {
            resetSourceTerms();
        }
    }
    
    
    template<class CloudType>
    Foam::MomentumCloud<CloudType>::MomentumCloud
    (
        const word& cloudName,
        const volScalarField& rho,
        const volVectorField& U,
        const dimensionedVector& g,
        const fluidThermo& carrierThermo,
        const bool readFields
    )
    :
        MomentumCloud(cloudName, rho, U, carrierThermo.mu(), g, readFields)
    {}
    
    
    template<class CloudType>
    Foam::MomentumCloud<CloudType>::MomentumCloud
    (
        MomentumCloud<CloudType>& c,
        const word& name
    )
    :
        CloudType(c, name),
        cloudCopyPtr_(nullptr),
        particleProperties_(c.particleProperties_),
        outputProperties_(c.outputProperties_),
        solution_(c.solution_),
        constProps_(c.constProps_),
        subModelProperties_(c.subModelProperties_),
        rndGen_(c.rndGen_),
        cellOccupancyPtr_(nullptr),
        cellLengthScale_(c.cellLengthScale_),
        pNumber_(c.pNumber_),
        rho_(c.rho_),
        U_(c.U_),
        mu_(c.mu_),
        g_(c.g_),
        pAmbient_(c.pAmbient_),
        forces_(c.forces_),
        functions_(c.functions_),
        injectors_(c.injectors_),
        dispersionModel_(c.dispersionModel_->clone()),
        patchInteractionModel_(c.patchInteractionModel_->clone()),
        stochasticCollisionModel_(c.stochasticCollisionModel_->clone()),
        surfaceFilmModel_(c.surfaceFilmModel_->clone()),
        UIntegrator_(c.UIntegrator_->clone()),
        UTrans_
        (
            new volVectorField::Internal
            (
                IOobject
                (
                    this->name() + ":UTrans",
                    this->db().time().timeName(),
                    this->db(),
                    IOobject::NO_READ,
                    IOobject::NO_WRITE,
                    false
                ),
                c.UTrans_()
            )
        ),
        UCoeff_
        (
            new volScalarField::Internal
            (
                IOobject
                (
                    name + ":UCoeff",
                    this->db().time().timeName(),
                    this->db(),
                    IOobject::NO_READ,
                    IOobject::NO_WRITE,
                    false
                ),
                c.UCoeff_()
            )
        )
    {}
    
    
    template<class CloudType>
    Foam::MomentumCloud<CloudType>::MomentumCloud
    (
        const fvMesh& mesh,
        const word& name,
        const MomentumCloud<CloudType>& c
    )
    :
        CloudType(mesh, name, c),
        cloudCopyPtr_(nullptr),
        particleProperties_
        (
            IOobject
            (
                name + "Properties",
                mesh.time().constant(),
                mesh,
                IOobject::NO_READ,
                IOobject::NO_WRITE,
                false
            )
        ),
        outputProperties_
        (
            IOobject
            (
                name + "OutputProperties",
                this->mesh().time().timeName(),
                "uniform"/cloud::prefix/name,
                this->mesh(),
                IOobject::NO_READ,
                IOobject::NO_WRITE,
                false
            )
        ),
        solution_(mesh),
        constProps_(),
        subModelProperties_(dictionary::null),
        rndGen_(0),
        cellOccupancyPtr_(nullptr),
        cellLengthScale_(c.cellLengthScale_),
        pNumber_(c.pNumber_),
        rho_(c.rho_),
        U_(c.U_),
        mu_(c.mu_),
        g_(c.g_),
        pAmbient_(c.pAmbient_),
        forces_(*this, mesh),
        functions_(*this),
        injectors_(*this),
        dispersionModel_(nullptr),
        patchInteractionModel_(nullptr),
        stochasticCollisionModel_(nullptr),
        surfaceFilmModel_(nullptr),
        UIntegrator_(nullptr),
        UTrans_(nullptr),
        UCoeff_(nullptr)
    {}
    
    
    // * * * * * * * * * * * * * * * * Destructor  * * * * * * * * * * * * * * * //
    
    template<class CloudType>
    Foam::MomentumCloud<CloudType>::~MomentumCloud()
    {}
    
    
    // * * * * * * * * * * * * * * * Member Functions  * * * * * * * * * * * * * //
    
    template<class CloudType>
    void Foam::MomentumCloud<CloudType>::setParcelThermoProperties
    (
        parcelType& parcel,
        const scalar lagrangianDt
    )
    {
        parcel.rho() = constProps_.rho0();
    }
    
    
    template<class CloudType>
    void Foam::MomentumCloud<CloudType>::checkParcelProperties
    (
        parcelType& parcel,
        const scalar lagrangianDt,
        const bool fullyDescribed
    )
    {
        const scalar carrierDt = this->mesh().time().deltaTValue();
        parcel.stepFraction() = (carrierDt - lagrangianDt)/carrierDt;
    
        if (parcel.typeId() == -1)
        {
            parcel.typeId() = constProps_.parcelTypeId();
        }
    }
    
    
    template<class CloudType>
    void Foam::MomentumCloud<CloudType>::storeState()
    {
        cloudCopyPtr_.reset
        (
            static_cast<MomentumCloud<CloudType>*>
            (
                clone(this->name() + "Copy").ptr()
            )
        );
    }
    
    
    template<class CloudType>
    void Foam::MomentumCloud<CloudType>::restoreState()
    {
        cloudReset(cloudCopyPtr_());
        cloudCopyPtr_.clear();
    }
    
    
    template<class CloudType>
    void Foam::MomentumCloud<CloudType>::resetSourceTerms()
    {
        UTransRef().field() = Zero;
        UCoeffRef().field() = 0.0;
    }
    
    
    template<class CloudType>
    template<class Type>
    void Foam::MomentumCloud<CloudType>::relax
    (
        DimensionedField<Type, volMesh>& field,
        const DimensionedField<Type, volMesh>& field0,
        const word& name
    ) const
    {
        const scalar coeff = solution_.relaxCoeff(name);
        field = field0 + coeff*(field - field0);
    }
    
    
    template<class CloudType>
    template<class Type>
    void Foam::MomentumCloud<CloudType>::scale
    (
        DimensionedField<Type, volMesh>& field,
        const word& name
    ) const
    {
        const scalar coeff = solution_.relaxCoeff(name);
        field *= coeff;
    }
    
    
    template<class CloudType>
    void Foam::MomentumCloud<CloudType>::relaxSources
    (
        const MomentumCloud<CloudType>& cloudOldTime
    )
    {
        this->relax(UTrans_(), cloudOldTime.UTrans_(), "U");
        this->relax(UCoeff_(), cloudOldTime.UCoeff_(), "U");
    }
    
    
    template<class CloudType>
    void Foam::MomentumCloud<CloudType>::scaleSources()
    {
        this->scale(UTrans_(), "U");
        this->scale(UCoeff_(), "U");
    }
    
    
    template<class CloudType>
    void Foam::MomentumCloud<CloudType>::preEvolve()
    {
        // force calculation of mesh dimensions - needed for parallel runs
        // with topology change due to lazy evaluation of valid mesh dimensions
        label nGeometricD = this->mesh().nGeometricD();
    
        Info<< "\nSolving " << nGeometricD << "-D cloud " << this->name() << endl;
    
        this->dispersion().cacheFields(true);
        forces_.cacheFields(true);
        updateCellOccupancy();
    
        pAmbient_ = constProps_.dict().template
            lookupOrDefault<scalar>("pAmbient", pAmbient_);
    
        functions_.preEvolve();
    }
    
    
    template<class CloudType>
    void Foam::MomentumCloud<CloudType>::evolve()
    {
        if (solution_.canEvolve())
        {
            typename parcelType::trackingData td(*this);
    
            solve(*this, td);
        }
    }
    
    
    template<class CloudType>
    template<class TrackCloudType>
    void Foam::MomentumCloud<CloudType>::motion
    (
        TrackCloudType& cloud,
        typename parcelType::trackingData& td
    )
    {
        CloudType::move(cloud, td, solution_.trackTime());
    
        updateCellOccupancy();
    }
    
    
    template<class CloudType>
    void Foam::MomentumCloud<CloudType>::patchData
    (
        const parcelType& p,
        const polyPatch& pp,
        vector& nw,
        vector& Up
    ) const
    {
        p.patchData(nw, Up);
        Up /= p.mesh().time().deltaTValue();
    
        // If this is a wall patch, then there may be a non-zero tangential velocity
        // component; the lid velocity in a lid-driven cavity case, for example. We
        // want the particle to interact with this velocity, so we look it up in the
        // velocity field and use it to set the wall-tangential component.
        if (!this->mesh().moving() && isA<wallPolyPatch>(pp))
        {
            const label patchi = pp.index();
            const label patchFacei = pp.whichFace(p.face());
    
            // We only want to use the boundary condition value only if it is set
            // by the boundary condition. If the boundary values are extrapolated
            // (e.g., slip conditions) then they represent the motion of the fluid
            // just inside the domain rather than that of the wall itself.
            if (U_.boundaryField()[patchi].fixesValue())
            {
                const vector Uw1 = U_.boundaryField()[patchi][patchFacei];
                const vector& Uw0 =
                    U_.oldTime().boundaryField()[patchi][patchFacei];
    
                const scalar f = p.currentTimeFraction();
    
                const vector Uw = Uw0 + f*(Uw1 - Uw0);
    
                const tensor nnw = nw*nw;
    
                Up = (nnw & Up) + Uw - (nnw & Uw);
            }
        }
    }
    
    
    template<class CloudType>
    void Foam::MomentumCloud<CloudType>::updateMesh()
    {
        updateCellOccupancy();
        injectors_.updateMesh();
        cellLengthScale_ = mag(cbrt(this->mesh().V()));
    }
    
    
    template<class CloudType>
    void Foam::MomentumCloud<CloudType>::autoMap(const mapPolyMesh& mapper)
    {
        Cloud<parcelType>::autoMap(mapper);
    
        updateMesh();
    }
    
    
    template<class CloudType>
    void Foam::MomentumCloud<CloudType>::info()
    {
        vector linearMomentum = linearMomentumOfSystem();
        reduce(linearMomentum, sumOp<vector>());
    
        scalar linearKineticEnergy = linearKineticEnergyOfSystem();
        reduce(linearKineticEnergy, sumOp<scalar>());
    
        Info<< "Cloud: " << this->name() << nl
            << "    Current number of parcels       = "
            << returnReduce(this->size(), sumOp<label>()) << nl
            << "    Current mass in system          = "
            << returnReduce(massInSystem(), sumOp<scalar>()) << nl
            << "    Linear momentum                 = "
            << linearMomentum << nl
            << "   |Linear momentum|                = "
            << mag(linearMomentum) << nl
            << "    Linear kinetic energy           = "
            << linearKineticEnergy << nl;
    
        injectors_.info(Info);
        this->surfaceFilm().info(Info);
        this->patchInteraction().info(Info);
    }
    
    
    // ************************************************************************* //
    

    http://dyfluid.com/index.html
    需要帮助debug算例的看这个 https://cfd-china.com/topic/8018

    1 条回复 最后回复

  • 登录

  • 登录或注册以进行搜索。
  • 第一个帖子
    最后一个帖子
0
  • 最新
  • 版块
  • 东岳流体
  • 随机看[请狂点我]