关于一个表达式的笛卡尔分解问题
- 
							
							
							
							
$$ 
 \begin{aligned}
 \nabla(\nabla \cdot \nabla) f
 &=
 \nabla \left(\frac{\partial^{2} f}{\partial {x}^{2}}+\frac{\partial^{2} f}{\partial {y}^{2}}+\frac{\partial^{2} f}{\partial {z}^{2}}\right)\
 &=\frac{\partial}{\partial x}\left(\frac{\partial^{2} f}{\partial {x}^{2}}+\frac{\partial^{2} f}{\partial {y}^{2}}+\frac{\partial^{2} f}{\partial {z}^{2}}\right) \vec i+\frac{\partial}{\partial y}\left(\frac{\partial^{2} f}{\partial {x}^{2}}+\frac{\partial^{2} f}{\partial {y}^{2}}+\frac{\partial^{2} f}{\partial {z}^{2}}\right) \vec j+\frac{\partial}{\partial z}\left(\frac{\partial^{2} f}{\partial {x}^{2}}+\frac{\partial^{2} f}{\partial {y}^{2}}+\frac{\partial^{2} f}{\partial {z}^{2}}\right) \vec k
 \end{aligned}
 $$
 
			

