k-omega 模型的网格无关性验证
- 
							
							
							
							
							
							
各位老师,大家好!我用标准的 k-omega 模型计算了一个平面自由射流(plane free jet)的案例,分别采用了 4 种不同的网格计算。 
 网格信息如下,
  
  
 边界条件使用 fluent 常用的设置方式。
  
 离散格式如图,
  
 计算的残差,mesh 1 和 mesh 2 的 continuity 在 3e-3 左右,其他物理量的残差各异,且无法小于 1e-6。mesh 3 和 mesh 4 的 continuity 在 3e-6 到 6e-6 左右,其他物理量的残差小于 1e-6。
 但是这 4 种网格的计算结果并没有显示出网格无关性。结果如图所示,
  
 继续加密的 mesh 5 也没有呈现网格无关性。而 k-epsilon 模型非常容易达到网格无关性,mesh 1 到 mesh 4 的结果几乎没有区别。
 请教各位熟悉湍流模型的老师,k-omega 模型如何达到网格无关性。
- 
							
							
							
							
@random_ran 老师您可以给一些意见吗? 
- 
							
							
							
							
Sorry I had hard time to type Chinese. Thanks for sharing this. Your finding is consistent with what I've 
 read this in Wilcox's book (P98).In free shear flow, k-epsilon model is unaffected by the numerical 
 value of $k$ and $\epsilon$, but k-omega is very sensitive to the
 choice of $\omega$.But the book does not provide any suggestions on how to achieve mesh 
 independence on k-omega model.Speaking to mesh independence study. The idea is simple: refining the 
 mesh at the region with high gradient. In reality, it depends on
 researchers to define where are these regions. Even in the simple
 context like flow over a circular cylinder. Different people choose
 different types of the computational domain, different strategies to
 generate the mesh, different parameters to build the block.There are something I would investigate: - continue refine the mesh in the "slot exit"
- expand the computational domain
- expand the "slot exit" region, especially where the shear layers
 are.
- use unsteady solver
- try LES if you have computational resource
 Wilcox, D. C., & others, (1998). Turbulence modeling for cfd. : DCW 
 industries La Canada, CA.
- 
							
							
							
							
							
							
@random_ran 我还有一个想法。书上都说 standard k-omega 模型是一个高雷诺数模型。我图上测试的是 Re=3000 的结果,无法达到网格无关解。我另外测试了一个 Re=16500 的结果,相同的网格,居然可以达到网格无关解。 
  
- 
							
							
							
							
@random_ran 感谢老师的意见! 
 
			


